research

Telescoping Recursive Representations and Estimation of Gauss-Markov Random Fields

Abstract

We present \emph{telescoping} recursive representations for both continuous and discrete indexed noncausal Gauss-Markov random fields. Our recursions start at the boundary (a hypersurface in Rd\R^d, d≥1d \ge 1) and telescope inwards. For example, for images, the telescoping representation reduce recursions from d=2d = 2 to d=1d = 1, i.e., to recursions on a single dimension. Under appropriate conditions, the recursions for the random field are linear stochastic differential/difference equations driven by white noise, for which we derive recursive estimation algorithms, that extend standard algorithms, like the Kalman-Bucy filter and the Rauch-Tung-Striebel smoother, to noncausal Markov random fields.Comment: To appear in the Transactions on Information Theor

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020