18 research outputs found

    Talking Face Generation by Adversarially Disentangled Audio-Visual Representation

    Full text link
    Talking face generation aims to synthesize a sequence of face images that correspond to a clip of speech. This is a challenging task because face appearance variation and semantics of speech are coupled together in the subtle movements of the talking face regions. Existing works either construct specific face appearance model on specific subjects or model the transformation between lip motion and speech. In this work, we integrate both aspects and enable arbitrary-subject talking face generation by learning disentangled audio-visual representation. We find that the talking face sequence is actually a composition of both subject-related information and speech-related information. These two spaces are then explicitly disentangled through a novel associative-and-adversarial training process. This disentangled representation has an advantage where both audio and video can serve as inputs for generation. Extensive experiments show that the proposed approach generates realistic talking face sequences on arbitrary subjects with much clearer lip motion patterns than previous work. We also demonstrate the learned audio-visual representation is extremely useful for the tasks of automatic lip reading and audio-video retrieval.Comment: AAAI Conference on Artificial Intelligence (AAAI 2019) Oral Presentation. Code, models, and video results are available on our webpage: https://liuziwei7.github.io/projects/TalkingFace.htm

    URNet : User-Resizable Residual Networks with Conditional Gating Module

    Full text link
    Convolutional Neural Networks are widely used to process spatial scenes, but their computational cost is fixed and depends on the structure of the network used. There are methods to reduce the cost by compressing networks or varying its computational path dynamically according to the input image. However, since a user can not control the size of the learned model, it is difficult to respond dynamically if the amount of service requests suddenly increases. We propose User-Resizable Residual Networks (URNet), which allows users to adjust the scale of the network as needed during evaluation. URNet includes Conditional Gating Module (CGM) that determines the use of each residual block according to the input image and the desired scale. CGM is trained in a supervised manner using the newly proposed scale loss and its corresponding training methods. URNet can control the amount of computation according to user's demand without degrading the accuracy significantly. It can also be used as a general compression method by fixing the scale size during training. In the experiments on ImageNet, URNet based on ResNet-101 maintains the accuracy of the baseline even when resizing it to approximately 80% of the original network, and demonstrates only about 1% accuracy degradation when using about 65% of the computation.Comment: 12 page
    corecore