244,089 research outputs found

    Exploring efficient neural architectures for linguistic-acoustic mapping in text-to-speech

    Get PDF
    Conversion from text to speech relies on the accurate mapping from linguistic to acoustic symbol sequences, for which current practice employs recurrent statistical models such as recurrent neural networks. Despite the good performance of such models (in terms of low distortion in the generated speech), their recursive structure with intermediate affine transformations tends to make them slow to train and to sample from. In this work, we explore two different mechanisms that enhance the operational efficiency of recurrent neural networks, and study their performance–speed trade-off. The first mechanism is based on the quasi-recurrent neural network, where expensive affine transformations are removed from temporal connections and placed only on feed-forward computational directions. The second mechanism includes a module based on the transformer decoder network, designed without recurrent connections but emulating them with attention and positioning codes. Our results show that the proposed decoder networks are competitive in terms of distortion when compared to a recurrent baseline, whilst being significantly faster in terms of CPU and GPU inference time. The best performing model is the one based on the quasi-recurrent mechanism, reaching the same level of naturalness as the recurrent neural network based model with a speedup of 11.2 on CPU and 3.3 on GPU.Peer ReviewedPostprint (published version

    From Imitation to Prediction, Data Compression vs Recurrent Neural Networks for Natural Language Processing

    Get PDF
    In recent studies [1][13][12] Recurrent Neural Networks were used for generative processes and their surprising performance can be explained by their ability to create good predictions. In addition, data compression is also based on predictions. What the problem comes down to is whether a data compressor could be used to perform as well as recurrent neural networks in natural language processing tasks. If this is possible,then the problem comes down to determining if a compression algorithm is even more intelligent than a neural network in specific tasks related to human language. In our journey we discovered what we think is the fundamental difference between a Data Compression Algorithm and a Recurrent Neural Network

    A Neural Stochastic Volatility Model

    Full text link
    In this paper, we show that the recent integration of statistical models with deep recurrent neural networks provides a new way of formulating volatility (the degree of variation of time series) models that have been widely used in time series analysis and prediction in finance. The model comprises a pair of complementary stochastic recurrent neural networks: the generative network models the joint distribution of the stochastic volatility process; the inference network approximates the conditional distribution of the latent variables given the observables. Our focus here is on the formulation of temporal dynamics of volatility over time under a stochastic recurrent neural network framework. Experiments on real-world stock price datasets demonstrate that the proposed model generates a better volatility estimation and prediction that outperforms mainstream methods, e.g., deterministic models such as GARCH and its variants, and stochastic models namely the MCMC-based model \emph{stochvol} as well as the Gaussian process volatility model \emph{GPVol}, on average negative log-likelihood

    Complexity without chaos: Plasticity within random recurrent networks generates robust timing and motor control

    Get PDF
    It is widely accepted that the complex dynamics characteristic of recurrent neural circuits contributes in a fundamental manner to brain function. Progress has been slow in understanding and exploiting the computational power of recurrent dynamics for two main reasons: nonlinear recurrent networks often exhibit chaotic behavior and most known learning rules do not work in robust fashion in recurrent networks. Here we address both these problems by demonstrating how random recurrent networks (RRN) that initially exhibit chaotic dynamics can be tuned through a supervised learning rule to generate locally stable neural patterns of activity that are both complex and robust to noise. The outcome is a novel neural network regime that exhibits both transiently stable and chaotic trajectories. We further show that the recurrent learning rule dramatically increases the ability of RRNs to generate complex spatiotemporal motor patterns, and accounts for recent experimental data showing a decrease in neural variability in response to stimulus onset
    corecore