140,834 research outputs found

    Recurrent Models of Visual Attention

    Full text link
    Applying convolutional neural networks to large images is computationally expensive because the amount of computation scales linearly with the number of image pixels. We present a novel recurrent neural network model that is capable of extracting information from an image or video by adaptively selecting a sequence of regions or locations and only processing the selected regions at high resolution. Like convolutional neural networks, the proposed model has a degree of translation invariance built-in, but the amount of computation it performs can be controlled independently of the input image size. While the model is non-differentiable, it can be trained using reinforcement learning methods to learn task-specific policies. We evaluate our model on several image classification tasks, where it significantly outperforms a convolutional neural network baseline on cluttered images, and on a dynamic visual control problem, where it learns to track a simple object without an explicit training signal for doing so

    Temporal Attention-Gated Model for Robust Sequence Classification

    Full text link
    Typical techniques for sequence classification are designed for well-segmented sequences which have been edited to remove noisy or irrelevant parts. Therefore, such methods cannot be easily applied on noisy sequences expected in real-world applications. In this paper, we present the Temporal Attention-Gated Model (TAGM) which integrates ideas from attention models and gated recurrent networks to better deal with noisy or unsegmented sequences. Specifically, we extend the concept of attention model to measure the relevance of each observation (time step) of a sequence. We then use a novel gated recurrent network to learn the hidden representation for the final prediction. An important advantage of our approach is interpretability since the temporal attention weights provide a meaningful value for the salience of each time step in the sequence. We demonstrate the merits of our TAGM approach, both for prediction accuracy and interpretability, on three different tasks: spoken digit recognition, text-based sentiment analysis and visual event recognition.Comment: Accepted by CVPR 201

    Going in circles is the way forward: the role of recurrence in visual inference

    Full text link
    Biological visual systems exhibit abundant recurrent connectivity. State-of-the-art neural network models for visual recognition, by contrast, rely heavily or exclusively on feedforward computation. Any finite-time recurrent neural network (RNN) can be unrolled along time to yield an equivalent feedforward neural network (FNN). This important insight suggests that computational neuroscientists may not need to engage recurrent computation, and that computer-vision engineers may be limiting themselves to a special case of FNN if they build recurrent models. Here we argue, to the contrary, that FNNs are a special case of RNNs and that computational neuroscientists and engineers should engage recurrence to understand how brains and machines can (1) achieve greater and more flexible computational depth, (2) compress complex computations into limited hardware, (3) integrate priors and priorities into visual inference through expectation and attention, (4) exploit sequential dependencies in their data for better inference and prediction, and (5) leverage the power of iterative computation
    corecore