4,768 research outputs found

    Minimum Perimeter Rectangles That Enclose Congruent Non-Overlapping Circles

    Get PDF
    We use computational experiments to find the rectangles of minimum perimeter into which a given number n of non-overlapping congruent circles can be packed. No assumption is made on the shape of the rectangles. In many of the packings found, the circles form the usual regular square-grid or hexagonal patterns or their hybrids. However, for most values of n in the tested range n =< 5000, e.g., for n = 7, 13, 17, 21, 22, 26, 31, 37, 38, 41, 43...,4997, 4998, 4999, 5000, we prove that the optimum cannot possibly be achieved by such regular arrangements. Usually, the irregularities in the best packings found for such n are small, localized modifications to regular patterns; those irregularities are usually easy to predict. Yet for some such irregular n, the best packings found show substantial, extended irregularities which we did not anticipate. In the range we explored carefully, the optimal packings were substantially irregular only for n of the form n = k(k+1)+1, k = 3, 4, 5, 6, 7, i.e., for n = 13, 21, 31, 43, and 57. Also, we prove that the height-to-width ratio of rectangles of minimum perimeter containing packings of n congruent circles tends to 1 as n tends to infinity.Comment: existence of irregular minimum perimeter packings for n not of the form (10) is conjectured; smallest such n is n=66; existence of irregular minimum area packings is conjectured, e.g. for n=453; locally optimal packings for the two minimization criteria are conjecturally the same (p.22, line 5); 27 pages, 12 figure

    On three soft rectangle packing problems with guillotine constraints

    Full text link
    We investigate how to partition a rectangular region of length L1L_1 and height L2L_2 into nn rectangles of given areas (a1,,an)(a_1, \dots, a_n) using two-stage guillotine cuts, so as to minimize either (i) the sum of the perimeters, (ii) the largest perimeter, or (iii) the maximum aspect ratio of the rectangles. These problems play an important role in the ongoing Vietnamese land-allocation reform, as well as in the optimization of matrix multiplication algorithms. We show that the first problem can be solved to optimality in O(nlogn)\mathcal{O}(n \log n), while the two others are NP-hard. We propose mixed integer programming (MIP) formulations and a binary search-based approach for solving the NP-hard problems. Experimental analyses are conducted to compare the solution approaches in terms of computational efficiency and solution quality, for different objectives

    Defragmenting the Module Layout of a Partially Reconfigurable Device

    Full text link
    Modern generations of field-programmable gate arrays (FPGAs) allow for partial reconfiguration. In an online context, where the sequence of modules to be loaded on the FPGA is unknown beforehand, repeated insertion and deletion of modules leads to progressive fragmentation of the available space, making defragmentation an important issue. We address this problem by propose an online and an offline component for the defragmentation of the available space. We consider defragmenting the module layout on a reconfigurable device. This corresponds to solving a two-dimensional strip packing problem. Problems of this type are NP-hard in the strong sense, and previous algorithmic results are rather limited. Based on a graph-theoretic characterization of feasible packings, we develop a method that can solve two-dimensional defragmentation instances of practical size to optimality. Our approach is validated for a set of benchmark instances.Comment: 10 pages, 11 figures, 1 table, Latex, to appear in "Engineering of Reconfigurable Systems and Algorithms" as a "Distinguished Paper

    Hard and Easy Instances of L-Tromino Tilings

    Get PDF
    We study tilings of regions in the square lattice with L-shaped trominoes. Deciding the existence of a tiling with L-trominoes for an arbitrary region in general is NP-complete, nonetheless, we identify restrictions to the problem where it either remains NP-complete or has a polynomial time algorithm. First, we characterize the possibility of when an Aztec rectangle and an Aztec diamond has an L-tromino tiling. Then, we study tilings of arbitrary regions where only 180180^\circ rotations of L-trominoes are available. For this particular case we show that deciding the existence of a tiling remains NP-complete; yet, if a region does not contains certain so-called "forbidden polyominoes" as sub-regions, then there exists a polynomial time algorithm for deciding a tiling.Comment: Full extended version of LNCS 11355:82-95 (WALCOM 2019

    Recent Advances in Multi-dimensional Packing Problems

    Get PDF
    corecore