513 research outputs found

    Robustly Learning Mixtures of kk Arbitrary Gaussians

    Full text link
    We give a polynomial-time algorithm for the problem of robustly estimating a mixture of kk arbitrary Gaussians in Rd\mathbb{R}^d, for any fixed kk, in the presence of a constant fraction of arbitrary corruptions. This resolves the main open problem in several previous works on algorithmic robust statistics, which addressed the special cases of robustly estimating (a) a single Gaussian, (b) a mixture of TV-distance separated Gaussians, and (c) a uniform mixture of two Gaussians. Our main tools are an efficient \emph{partial clustering} algorithm that relies on the sum-of-squares method, and a novel \emph{tensor decomposition} algorithm that allows errors in both Frobenius norm and low-rank terms.Comment: This version extends the previous one to yield 1) robust proper learning algorithm with poly(eps) error and 2) an information theoretic argument proving that the same algorithms in fact also yield parameter recovery guarantees. The updates are included in Sections 7,8, and 9 and the main result from the previous version (Thm 1.4) is presented and proved in Section

    Solving Inverse Problems with Piecewise Linear Estimators: From Gaussian Mixture Models to Structured Sparsity

    Full text link
    A general framework for solving image inverse problems is introduced in this paper. The approach is based on Gaussian mixture models, estimated via a computationally efficient MAP-EM algorithm. A dual mathematical interpretation of the proposed framework with structured sparse estimation is described, which shows that the resulting piecewise linear estimate stabilizes the estimation when compared to traditional sparse inverse problem techniques. This interpretation also suggests an effective dictionary motivated initialization for the MAP-EM algorithm. We demonstrate that in a number of image inverse problems, including inpainting, zooming, and deblurring, the same algorithm produces either equal, often significantly better, or very small margin worse results than the best published ones, at a lower computational cost.Comment: 30 page

    Convex Clustering via Optimal Mass Transport

    Full text link
    We consider approximating distributions within the framework of optimal mass transport and specialize to the problem of clustering data sets. Distances between distributions are measured in the Wasserstein metric. The main problem we consider is that of approximating sample distributions by ones with sparse support. This provides a new viewpoint to clustering. We propose different relaxations of a cardinality function which penalizes the size of the support set. We establish that a certain relaxation provides the tightest convex lower approximation to the cardinality penalty. We compare the performance of alternative relaxations on a numerical study on clustering.Comment: 12 pages, 12 figure
    corecore