4,763 research outputs found

    Sequential Compressed Sensing

    Full text link
    Compressed sensing allows perfect recovery of sparse signals (or signals sparse in some basis) using only a small number of random measurements. Existing results in compressed sensing literature have focused on characterizing the achievable performance by bounding the number of samples required for a given level of signal sparsity. However, using these bounds to minimize the number of samples requires a-priori knowledge of the sparsity of the unknown signal, or the decay structure for near-sparse signals. Furthermore, there are some popular recovery methods for which no such bounds are known. In this paper, we investigate an alternative scenario where observations are available in sequence. For any recovery method, this means that there is now a sequence of candidate reconstructions. We propose a method to estimate the reconstruction error directly from the samples themselves, for every candidate in this sequence. This estimate is universal in the sense that it is based only on the measurement ensemble, and not on the recovery method or any assumed level of sparsity of the unknown signal. With these estimates, one can now stop observations as soon as there is reasonable certainty of either exact or sufficiently accurate reconstruction. They also provide a way to obtain "run-time" guarantees for recovery methods that otherwise lack a-priori performance bounds. We investigate both continuous (e.g. Gaussian) and discrete (e.g. Bernoulli) random measurement ensembles, both for exactly sparse and general near-sparse signals, and with both noisy and noiseless measurements.Comment: to appear in IEEE transactions on Special Topics in Signal Processin

    Information Theoretic Limits for Standard and One-Bit Compressed Sensing with Graph-Structured Sparsity

    Full text link
    In this paper, we analyze the information theoretic lower bound on the necessary number of samples needed for recovering a sparse signal under different compressed sensing settings. We focus on the weighted graph model, a model-based framework proposed by Hegde et al. (2015), for standard compressed sensing as well as for one-bit compressed sensing. We study both the noisy and noiseless regimes. Our analysis is general in the sense that it applies to any algorithm used to recover the signal. We carefully construct restricted ensembles for different settings and then apply Fano's inequality to establish the lower bound on the necessary number of samples. Furthermore, we show that our bound is tight for one-bit compressed sensing, while for standard compressed sensing, our bound is tight up to a logarithmic factor of the number of non-zero entries in the signal

    Info-Greedy sequential adaptive compressed sensing

    Full text link
    We present an information-theoretic framework for sequential adaptive compressed sensing, Info-Greedy Sensing, where measurements are chosen to maximize the extracted information conditioned on the previous measurements. We show that the widely used bisection approach is Info-Greedy for a family of kk-sparse signals by connecting compressed sensing and blackbox complexity of sequential query algorithms, and present Info-Greedy algorithms for Gaussian and Gaussian Mixture Model (GMM) signals, as well as ways to design sparse Info-Greedy measurements. Numerical examples demonstrate the good performance of the proposed algorithms using simulated and real data: Info-Greedy Sensing shows significant improvement over random projection for signals with sparse and low-rank covariance matrices, and adaptivity brings robustness when there is a mismatch between the assumed and the true distributions.Comment: Preliminary results presented at Allerton Conference 2014. To appear in IEEE Journal Selected Topics on Signal Processin

    Improved Bounds for Universal One-Bit Compressive Sensing

    Full text link
    Unlike compressive sensing where the measurement outputs are assumed to be real-valued and have infinite precision, in "one-bit compressive sensing", measurements are quantized to one bit, their signs. In this work, we show how to recover the support of sparse high-dimensional vectors in the one-bit compressive sensing framework with an asymptotically near-optimal number of measurements. We also improve the bounds on the number of measurements for approximately recovering vectors from one-bit compressive sensing measurements. Our results are universal, namely the same measurement scheme works simultaneously for all sparse vectors. Our proof of optimality for support recovery is obtained by showing an equivalence between the task of support recovery using 1-bit compressive sensing and a well-studied combinatorial object known as Union Free Families.Comment: 14 page

    Stable image reconstruction using total variation minimization

    Get PDF
    This article presents near-optimal guarantees for accurate and robust image recovery from under-sampled noisy measurements using total variation minimization. In particular, we show that from O(slog(N)) nonadaptive linear measurements, an image can be reconstructed to within the best s-term approximation of its gradient up to a logarithmic factor, and this factor can be removed by taking slightly more measurements. Along the way, we prove a strengthened Sobolev inequality for functions lying in the null space of suitably incoherent matrices.Comment: 25 page
    corecore