120 research outputs found

    Reconstructive Sparse Code Transfer for Contour Detection and Semantic Labeling

    Get PDF
    We frame the task of predicting a semantic labeling as a sparse reconstruction procedure that applies a target-specific learned transfer function to a generic deep sparse code representation of an image. This strategy partitions training into two distinct stages. First, in an unsupervised manner, we learn a set of generic dictionaries optimized for sparse coding of image patches. We train a multilayer representation via recursive sparse dictionary learning on pooled codes output by earlier layers. Second, we encode all training images with the generic dictionaries and learn a transfer function that optimizes reconstruction of patches extracted from annotated ground-truth given the sparse codes of their corresponding image patches. At test time, we encode a novel image using the generic dictionaries and then reconstruct using the transfer function. The output reconstruction is a semantic labeling of the test image. Applying this strategy to the task of contour detection, we demonstrate performance competitive with state-of-the-art systems. Unlike almost all prior work, our approach obviates the need for any form of hand-designed features or filters. To illustrate general applicability, we also show initial results on semantic part labeling of human faces. The effectiveness of our approach opens new avenues for research on deep sparse representations. Our classifiers utilize this representation in a novel manner. Rather than acting on nodes in the deepest layer, they attach to nodes along a slice through multiple layers of the network in order to make predictions about local patches. Our flexible combination of a generatively learned sparse representation with discriminatively trained transfer classifiers extends the notion of sparse reconstruction to encompass arbitrary semantic labeling tasks.Comment: to appear in Asian Conference on Computer Vision (ACCV), 201

    High-for-Low and Low-for-High: Efficient Boundary Detection from Deep Object Features and its Applications to High-Level Vision

    Full text link
    Most of the current boundary detection systems rely exclusively on low-level features, such as color and texture. However, perception studies suggest that humans employ object-level reasoning when judging if a particular pixel is a boundary. Inspired by this observation, in this work we show how to predict boundaries by exploiting object-level features from a pretrained object-classification network. Our method can be viewed as a "High-for-Low" approach where high-level object features inform the low-level boundary detection process. Our model achieves state-of-the-art performance on an established boundary detection benchmark and it is efficient to run. Additionally, we show that due to the semantic nature of our boundaries we can use them to aid a number of high-level vision tasks. We demonstrate that using our boundaries we improve the performance of state-of-the-art methods on the problems of semantic boundary labeling, semantic segmentation and object proposal generation. We can view this process as a "Low-for-High" scheme, where low-level boundaries aid high-level vision tasks. Thus, our contributions include a boundary detection system that is accurate, efficient, generalizes well to multiple datasets, and is also shown to improve existing state-of-the-art high-level vision methods on three distinct tasks

    Contour Detection from Deep Patch-level Boundary Prediction

    Full text link
    In this paper, we present a novel approach for contour detection with Convolutional Neural Networks. A multi-scale CNN learning framework is designed to automatically learn the most relevant features for contour patch detection. Our method uses patch-level measurements to create contour maps with overlapping patches. We show the proposed CNN is able to to detect large-scale contours in an image efficienly. We further propose a guided filtering method to refine the contour maps produced from large-scale contours. Experimental results on the major contour benchmark databases demonstrate the effectiveness of the proposed technique. We show our method can achieve good detection of both fine-scale and large-scale contours.Comment: IEEE International Conference on Signal and Image Processing 201

    CASENet: Deep Category-Aware Semantic Edge Detection

    Full text link
    Boundary and edge cues are highly beneficial in improving a wide variety of vision tasks such as semantic segmentation, object recognition, stereo, and object proposal generation. Recently, the problem of edge detection has been revisited and significant progress has been made with deep learning. While classical edge detection is a challenging binary problem in itself, the category-aware semantic edge detection by nature is an even more challenging multi-label problem. We model the problem such that each edge pixel can be associated with more than one class as they appear in contours or junctions belonging to two or more semantic classes. To this end, we propose a novel end-to-end deep semantic edge learning architecture based on ResNet and a new skip-layer architecture where category-wise edge activations at the top convolution layer share and are fused with the same set of bottom layer features. We then propose a multi-label loss function to supervise the fused activations. We show that our proposed architecture benefits this problem with better performance, and we outperform the current state-of-the-art semantic edge detection methods by a large margin on standard data sets such as SBD and Cityscapes.Comment: Accepted to CVPR 201

    DeepEdge: A Multi-Scale Bifurcated Deep Network for Top-Down Contour Detection

    Full text link
    Contour detection has been a fundamental component in many image segmentation and object detection systems. Most previous work utilizes low-level features such as texture or saliency to detect contours and then use them as cues for a higher-level task such as object detection. However, we claim that recognizing objects and predicting contours are two mutually related tasks. Contrary to traditional approaches, we show that we can invert the commonly established pipeline: instead of detecting contours with low-level cues for a higher-level recognition task, we exploit object-related features as high-level cues for contour detection. We achieve this goal by means of a multi-scale deep network that consists of five convolutional layers and a bifurcated fully-connected sub-network. The section from the input layer to the fifth convolutional layer is fixed and directly lifted from a pre-trained network optimized over a large-scale object classification task. This section of the network is applied to four different scales of the image input. These four parallel and identical streams are then attached to a bifurcated sub-network consisting of two independently-trained branches. One branch learns to predict the contour likelihood (with a classification objective) whereas the other branch is trained to learn the fraction of human labelers agreeing about the contour presence at a given point (with a regression criterion). We show that without any feature engineering our multi-scale deep learning approach achieves state-of-the-art results in contour detection.Comment: Accepted to CVPR 201

    Colorization as a Proxy Task for Visual Understanding

    Full text link
    We investigate and improve self-supervision as a drop-in replacement for ImageNet pretraining, focusing on automatic colorization as the proxy task. Self-supervised training has been shown to be more promising for utilizing unlabeled data than other, traditional unsupervised learning methods. We build on this success and evaluate the ability of our self-supervised network in several contexts. On VOC segmentation and classification tasks, we present results that are state-of-the-art among methods not using ImageNet labels for pretraining representations. Moreover, we present the first in-depth analysis of self-supervision via colorization, concluding that formulation of the loss, training details and network architecture play important roles in its effectiveness. This investigation is further expanded by revisiting the ImageNet pretraining paradigm, asking questions such as: How much training data is needed? How many labels are needed? How much do features change when fine-tuned? We relate these questions back to self-supervision by showing that colorization provides a similarly powerful supervisory signal as various flavors of ImageNet pretraining.Comment: CVPR 2017 (Project page: http://people.cs.uchicago.edu/~larsson/color-proxy/

    Embodied Visual Perception Models For Human Behavior Understanding

    Get PDF
    Many modern applications require extracting the core attributes of human behavior such as a person\u27s attention, intent, or skill level from the visual data. There are two main challenges related to this problem. First, we need models that can represent visual data in terms of object-level cues. Second, we need models that can infer the core behavioral attributes from the visual data. We refer to these two challenges as ``learning to see\u27\u27, and ``seeing to learn\u27\u27 respectively. In this PhD thesis, we have made progress towards addressing both challenges. We tackle the problem of ``learning to see\u27\u27 by developing methods that extract object-level information directly from raw visual data. This includes, two top-down contour detectors, DeepEdge and HfL, which can be used to aid high-level vision tasks such as object detection. Furthermore, we also present two semantic object segmentation methods, Boundary Neural Fields (BNFs), and Convolutional Random Walk Networks (RWNs), which integrate low-level affinity cues into an object segmentation process. We then shift our focus to video-level understanding, and present a Spatiotemporal Sampling Network (STSN), which can be used for video object detection, and discriminative motion feature learning. Afterwards, we transition into the second subproblem of ``seeing to learn\u27\u27, for which we leverage first-person GoPro cameras that record what people see during a particular activity. We aim to infer the core behavior attributes such as a person\u27s attention, intention, and his skill level from such first-person data. To do so, we first propose a concept of action-objects--the objects that capture person\u27s conscious visual (watching a TV) or tactile (taking a cup) interactions. We then introduce two models, EgoNet and Visual-Spatial Network (VSN), which detect action-objects in supervised and unsupervised settings respectively. Afterwards, we focus on a behavior understanding task in a complex basketball activity. We present a method for evaluating players\u27 skill level from their first-person basketball videos, and also a model that predicts a player\u27s future motion trajectory from a single first-person image
    • …
    corecore