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Embodied Visual Perception Models For Human Behavior Understanding

Abstract
Many modern applications require extracting the core attributes of human behavior such as a person's
attention, intent, or skill level from the visual data. There are two main challenges related to this problem.
First, we need models that can represent visual data in terms of object-level cues. Second, we need models that
can infer the core behavioral attributes from the visual data. We refer to these two challenges as ``learning to
see'', and ``seeing to learn'' respectively. In this PhD thesis, we have made progress towards addressing both
challenges.

We tackle the problem of ``learning to see'' by developing methods that extract object-level information
directly from raw visual data. This includes, two top-down contour detectors, DeepEdge and Hf L, which can
be used to aid high-level vision tasks such as object detection. Furthermore, we also present two semantic
object segmentation methods, Boundary Neural Fields (BNFs), and Convolutional Random Walk Networks
(RWNs), which integrate low-level affinity cues into an object segmentation process. We then shift our focus
to video-level understanding, and present a Spatiotemporal Sampling Network (STSN), which can be used
for video object detection, and discriminative motion feature learning.

Afterwards, we transition into the second subproblem of ``seeing to learn'', for which we leverage first-person
GoPro cameras that record what people see during a particular activity. We aim to infer the core behavior
attributes such as a person's attention, intention, and his skill level from such first-person data. To do so, we
first propose a concept of action-objects--the objects that capture person's conscious visual (watching a TV)
or tactile (taking a cup) interactions. We then introduce two models, EgoNet and Visual-Spatial Network
(VSN), which detect action-objects in supervised and unsupervised settings respectively. Afterwards, we
focus on a behavior understanding task in a complex basketball activity. We present a method for evaluating
players' skill level from their first-person basketball videos, and also a model that predicts a player's future
motion trajectory from a single first-person image.
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ABSTRACT

EMBODIED VISUAL PERCEPTION MODELS FOR

HUMAN BEHAVIOR UNDERSTANDING

Gediminas Bertasius

Jianbo Shi

Many modern applications require extracting the core attributes of human behavior such

as a person’s attention, intent, or skill level from the visual data. There are two main

challenges related to this problem. First, we need models that can represent visual data

in terms of object-level cues. Second, we need models that can infer the core behavioral

attributes from the visual data. We refer to these two challenges as “learning to see”, and

“seeing to learn” respectively. In this PhD thesis, we have made progress towards addressing

both challenges.

We tackle the problem of “learning to see” by developing methods that extract object-level

information directly from raw visual data. This includes, two top-down contour detectors,

DeepEdge [1] and HfL [2], which can be used to aid high-level vision tasks such as ob-

ject detection. Furthermore, we also present two semantic object segmentation methods,

Boundary Neural Fields (BNFs) [3], and Convolutional Random Walk Networks (RWNs) [4],

which integrate low-level affinity cues into an object segmentation process. We then shift

our focus to video-level understanding, and present a Spatiotemporal Sampling Network

(STSN), which can be used for video object detection [5], and discriminative motion fea-

ture learning [6].

Afterwards, we transition into the second subproblem of “seeing to learn”, for which we

leverage first-person GoPro cameras that record what people see during a particular activity.

We aim to infer the core behavior attributes such as a person’s attention, intention, and

his skill level from such first-person data. To do so, we first propose a concept of action-
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objects–the objects that capture person’s conscious visual (watching a TV) or tactile (taking

a cup) interactions. We then introduce two models, EgoNet [7] and Visual-Spatial Network

(VSN) [8], which detect action-objects in supervised and unsupervised settings respectively.

Afterwards, we focus on a behavior understanding task in a complex basketball activity.

We present a method for evaluating players’ skill level from their first-person basketball

videos [9], and also a model that predicts a player’s future motion trajectory from a single

first-person image [10].
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CHAPTER 1 : Problem Overview

Understanding the core attributes of human behavior such as attention, intent, or skill level

is crucial for many applications. Nevertheless, directly measuring them is difficult because

these attributes require understanding what that person is thinking in a particular situation.

Now, imagine a scenario where we could “tap” into a particular person’s visual system and

see exactly what that person sees as he progresses through his day (see Figure 1). Could we

then use such visual data to answer questions such as “what is that person paying attention

to?”, “what is he doing now?”, “what will he do next?”, “how good is he at a particular

activity?”.

For instance, take a look at the first image in row one of Figure 1. This image illustrates

almost exactly what a person sees during a particular activity. Just by looking at this

image, we can immediately tell a few things about the person behind the camera. First, we

know that he is in the kitchen, and thus, he is probably cooking. Furthermore, it also seems

that his attention is currently focused on the kitchen stove, and thus we could predict that

he might approach the kitchen stove next. Finally, from some of the objects in the scene

(i.e. a steak on the cutting board), we can even guess what kind of dish he is preparing.

Similarly consider the sequence of images in row two of Figure 1. Just by looking at these

images, we can easily tell that the person is currently playing basketball. However, there

are also many other details in these images that reveal more subtle cues about this person.

For instance, from his current position on the court, we can infer that he is the point guard

in his team. Furthermore, throughout the sequence, we observe that by calling a certain

play he outmaneuvers both of the defenders, which allows him to create an open three

point shot for himself. Not only does such an action signifies that this person has a good

decision making ability, but it also reveals that he is a skilled shooter as we observe his shot

mechanics from up close.
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time t time t+5 time t+10

Figure 1: Egocentric images recorded using a GoPro camera attached to a person’s head.
The recorded first-person images capture almost exactly what that person sees as he per-
forms activities such as cooking, or playing basketball. Such visual data allows us to infer a
person’s attention, his intentions, his skill level at a particular activity, and even his decision
making process in different situations.

Why would knowing any of these things be useful? Consider an application of building a

personal AI assistant inside one’s home. Suppose such a system had access to the visual

data of a person cooking a meal (row one of Figure 1). With the ability to infer that

person’s attention and his intentions, such a system could automatically control gadgets

such as the kitchen stove, order missing materials when needed, and assist this person in

a number of different ways. Similarly, having access to a particular person’s visual feed

during activities such as basketball (row two of Figure 1), would allow us to build novel

systems for player’s decision making analysis and their skill assessment. This would be

highly beneficial as nowadays these tasks are still performed by humans, making it a costly

and a time consuming process.

Inspired by these ideas, we aim to build visual perception models for inferring the core

attributes of human behavior such as attention, intention, and skill. We identify two key

challenges related to this problem. First, we need models that can represent visual data in
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terms of object-level cues– a representation that would allow us to understand the observed

environment better. Second, we need models that can infer the core behavioral attributes

from the visual data. We refer to these two challenges as “learning to see”, and “seeing to

learn” respectively.

We tackle the problem of “learning to see” by developing techniques that extract object-

level information directly from raw visual data. To do so, we first propose two top-down

edge detectors: DeepEdge [1] and HFL [2], which utilize high-level object features for a

low-level boundary detection process. We show that due to the semantic nature of our

boundaries we can also use these boundaries to aid a number of high-level vision tasks

such as semantic object segmentation or object detection. In addition, we also present two

effective object segmentation methods, Boundary Neural Fields (BNF) [3] and Convolu-

tional Random Walk Networks (RWN) [4], which successfully integrate low-level affinity

cues for improved semantic object segmentation performance. Furthermore, we introduce a

novel Spatiotemporal Sampling Network (STSN) architecture, which we use for video object

detection [5], and discriminative motion feature learning [6].

Afterwards, we transition to the problem of “seeing to learn”. To tackle this problem,

we leverage first-person GoPro cameras, which allow us to study the interplay between a

person’s visual attention and his actions. First, we propose a concept of action-objects–

the objects that capture person’s conscious visual (watching a TV) or tactile (taking a

cup) interactions. We then present EgoNet [7], a joint two-stream network that holistically

integrates visual appearance (RGB) and 3D spatial layout (depth and height) cues to predict

per-pixel likelihood of action-objects using a supervised learning objective. Next, to enable

unsupervised learning of action-objects, we introduce a Visual-Spatial Network (VSN) [8]

consisting of spatial (“where”) and visual (“what”) pathways, which are optimized using

our proposed alternating cross-pathway supervision scheme.

Finally, we describe several approaches for behavior understanding in a complex basketball

activity. First, we present a method that assesses basketball players’ performance from
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first-person videos in an unscripted five-on-five basketball game [9]. Next, we propose a

model that takes as input a single first-person image capturing exactly what a player sees,

and then predicts his future motion trajectory [10].

In the subsequent chapters, we will discuss each of these systems in more detail. Fur-

thermore, we will present experiments validating the effectiveness of each method at its

respective task.
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Part II

Learning to See

6



CHAPTER 1 : DeepEdge: A Multi-Scale Bifurcated Deep Network

for Top-Down Contour Detection

1.1. Introduction
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Figure 2: Contour detection accuracy on the
BSDS500 dataset. Our method attains higher
average precision compared to prior methods
and state-of-the-art F-score. At low recall,
DeepEdge achieves nearly 100% precision.

Contour detection is typically considered a

low-level problem, and used to aid higher-

level tasks such as object detection [30, 31,

32, 33]. However, it can be argued that

the tasks of detecting objects and predict-

ing contours are closely related. For in-

stance, given the contours we can easily in-

fer which objects are present in the image.

Conversely, if we are given exact locations

of the objects we could predict contours just

as easily. A commonly established pipeline

in computer vision starts with with low-

level contour prediction and then moves up

to higher-level object detection. However,

since we claim that these two tasks are mutually related, we propose to invert this process.

Instead of using contours as low-level cues for object detection, we want to use object-

specific information as high-level cues for contour detection. Thus, in a sense our scheme

can be viewed as a top-down approach where object-level cues inform the low-level contour

detection process.

In this work, we present a unified multi-scale deep learning approach that uses higher-level

object information to predict contours. Specifically, we present a front-to-end convolu-

tional architecture where contours are learned directly from raw pixels. Our proposed deep

learning architecture reuses features computed by the first five convolutional layers of the
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Figure 3: Visualization of multi-scale DeepEdge network architecture. To extract can-
didate contour points, we run the Canny edge detector. Then, around each candidate
point, we extract patches at four different scales and simultaneously run them through the
five convolutional layers of the KNet [26]. We connect these convolutional layers to two
separately-trained network branches. The first branch is trained for classification, while the
second branch is trained as a regressor. At testing time, the scalar outputs from these two
sub-networks are averaged to produce the final score.

network of Krizhevsky et al. [26]. We refer to this network as the KNet. Because the KNet

has been trained for object classification, reusing its features enable our method to incor-

porate object-level information for contour prediction. In the experimental section, we will

show that this high-level object information greatly improves contour detection results.

Furthermore, our defined architecture operates on multiple scales simultaneously and com-

bines local and global information from the image, which leads to significantly improved

contour detection accuracy rates.

We connect the features computed by the convolutional layers of the KNet at four differ-

ent scales of the input with a learned subnetwork that bifurcates into two branches (the

architecture of our model is illustrated in Fig. 3).

What should the learning objective be? When a human observer decides if a pixel is

a boundary edge, a number of supporting evidence is used with object level reasoning.
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Figure 4: Visualization of the activation values at the selected convolutional filters of the
KNet (filters are resized to the original image dimensions). The filters in the second layer
fire on oriented edges inside the image. The third and fourth convolutional layers produce
an outline of the shape of the object. The fifth layer fires on the specific parts of the object.

While it is impossible to record such information, we do have the fraction of observers in

agreement for each pixel. We argue that a learning objective that predicts the fraction of

human labelers in agreement can mimic human reasoning better.

Thus, in the bifurcated sub-network we optimize the two branches with different learning

objectives. The weights in one branch are optimized with an edge classification objective,

while the other branch is trained to predict the fraction of human labelers in agreement,

i.e., using a regression criterion. We show that predictions from the classification branch

yield high edge recall, while the outputs of the regression branch have high precision. Thus,

fusing these two outputs allows us to obtain excellent results with respect to both metrics

and produce state-of-the-art F-score and average precision.

In summary, the use of higher-level object features, independent optimization of edge clas-

sification and regression objectives, as well as a unified multi-scale architecture are the key

characteristics that allow our method to achieve the state-of-the-art in contour detection

(see Fig. 2).

1.2. Related Work

Deep Learning. In the recent years, deep convolutional networks have achieved remark-

able results in a wide array of computer vision tasks [34, 35, 36, 26]. However, thus far,

applications of convolutional networks focused on high-level vision tasks such as face recogni-

tion, image classification, pose estimation or scene labeling [34, 35, 36, 26]. Excellent results
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in these tasks beg the question whether convolutional networks could perform equally well

in lower-level vision tasks such as contour detection. In this paper, we present a convolu-

tional architecture that achieves state-of-the-art results in a contour detection task, thus

demonstrating that convolutional networks can be applied successfully for lower-level vision

tasks as well.

Edge Detection. Most of the contour detection methods can be divided into two branches:

local and global methods. Local methods perform contour detection by reasoning about

small patches inside the image. Some recent local methods include sketch tokens [37] and

structured edges [15], Both of these methods are trained in a supervised fashion using a

random forest classifier. Sketch tokens [37] pose contour detection as a multi-class classifi-

cation task and predicts a label for each of the pixels individually. Structured edges [15],

on the other hand, attempt to predict the labels of multiple pixels simultaneously.

Global methods predict contours based on the information from the full image. Some of the

most successful approaches in this genre are the MCG detector [38], gPb detector [30] and

sparse code gradients [39]. While sparse code gradients use supervised SVM learning [40],

both gPb and MCG rely on some form of spectral methods. Other spectral-based methods

include Normalized Cuts [41] and PMI [42].

Recently, there have also been attempts to apply deep learning methods to the task of

contour detection. While SCT [43] is a sparse coding approach, both N4 fields [12] and

DeepNet [13] use Convolutional Neural Networks (CNNs) to predict contours. N4 fields

rely on dictionary learning and the use of the Nearest Neighbor algorithm within a CNN

framework while DeepNet uses a traditional CNN architecture to predict contours.

In comparison to these prior approaches, our work offers several contributions. First, we

define a novel multi-scale bifurcated CNN architecture that enables our network to achieve

state-of-the-art contour detection results. Second, we avoid manual feature engineering by

learning contours directly from raw data. Finally, we believe that we are the first to propose
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Figure 5: Detailed illustration of our proposed architecture in a single-scale setting. First,
an input patch, centered around the candidate point, goes through five convolutional layers
of the KNet. To extract high-level features, at each convolutional layer we extract a small
sub-volume of the feature map around the center point, and perform max, average, and
center pooling on this sub-volume. The pooled values feed a bifurcated sub-network. At
testing time, the scalar outputs computed from the branches of a bifurcated sub-networks
are averaged to produce a final contour prediction.

the use of high-level object features for contour detection, thus inverting the traditional

pipeline relying on low-level cues for mid-level feature extraction. Our experiments show

that this top-down approach for contour detection yields state-of-the-art results.

1.3. The DeepEdge Network

In this section, we describe our proposed deep learning approach for contour detection. For

simplicity, we first present our architecture in the single-scale scenario (subsection 1.3.1)

and then discuss how to take advantage of multiple scales (subsection 1.3.2).

1.3.1. Single-Scale Architecture

Selection of Candidate Edge Points. To extract a set of candidate contours with high

recall we apply the Canny edge detector [44] to the input image. For each of these points we
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then extract a patch of fixed size such that our candidate point is the center of the patch.

Patches that do not fit into the image boundaries are padded with the mirror reflections of

itself.

Extraction of High-Level Features. We then resize the patch of fixed size to match the

input dimensions of the KNet [26] and use this network to extract object-level features. The

KNet is an appropriate model for our setting as it has been trained over a large number of

object classes (the 1000 categories of the ImageNet dataset [45]) and thus captures features

that are generic and useful for many object categories. While such features have been

optimized for the task of object class recognition, they have been shown to be highly effective

for other image-analysis tasks, including object detection [46], attribute prediction [47], and

image style recognition [48]. The network was trained on 1.2 million images and it includes

more than 60 million parameters. Its architecture consists of 5 convolutional layers and 3

fully connected layers. As we intend to use the KNet as a feature extractor for boundary

detection, we utilize only the first 5 convolutional layers, which preserve explicit location

information before the “spatial scrambling” of the fully connection layers (note that a

spatially variant representation is crucially necessary to predict the presence of contours

at individual pixels). The first two KNet convolutional layers learn low-level information.

As we move into the deeper layers, however, we observe that the network learns higher-

level object information. The second convolutional layer seems to encode coherent edge

structures. The third convolutional layer fires at locations corresponding to prototypical

object shapes. The fourth layer appears to generate high responses for full shapes of the

object, whereas the fifth layer fires on the specific object parts (See Fig. 4).

In order to obtain a representation that captures this hierarchical information, we perform

feature extraction at each of the five convolutional layers, as shown in Fig. 5. Specifically,

we consider a small sub-volume of the feature map stack produced at each layer. The sub-

volume is centered at the center of the patch in order to assess the presence of a contour in a

small area around the candidate point. We then perform max, average, and center pooling
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Figure 6: A few samples of ground truth data illustrating the difference between the classi-
fication (first row) and the regression (second row) objectives. The classification branch is
trained to detect contours that are marked by at least one of the human annotators. Con-
versely, the regression branch is optimized to the contour values that depict the fraction of
human annotators agreeing on the contour.

on this sub-volume. This yields a feature descriptor of size 3×F where F is the number of

feature maps computed by the convolutional layer. While max and average pooling are well

established operations in deep learning, we define center pooling as selecting the center-

value from each of the feature maps. The motivation for center pooling is that for each

candidate point we want to predict the contour presence at that particular point. Because

the candidate point is located at the center of the input patch, center pooling extracts the

activation value from the location that corresponds to our candidate point location.

A Bifurcated Sub-Network. We connect the feature maps computed via pooling from

the five convolutional layers to two separately-trained network branches. Each branch

consists of two fully-connected layers. The first branch is trained using binary labels, i.e., to

perform contour classification. This branch is making less selective predictions by classifying

whether a given point is a contour or not. In a sense, this classification branch abstracts

details related to the edge structure (orientation, strength, etc) and simply tries to predict

the presence/absence of an edge at a given point. Due to such abstractions, the classification

branch produces contour predictions with high recall.

The second branch is optimized as a regressor to predict the fraction of human labelers
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agreeing about the contour presence at a particular point. Due to a regression objective,

this branch is much more selective than the first branch. Intuitively, the second branch

is trained to learn the structural differences between the contours that are marked by a

different fraction of human labelers. For instance, the area that was labeled as a contour by

80% of human labelers must be significantly different than the area that was labeled as a

contour by 20% human labelers. The regression branch is trying to learn such differences by

predicting the fraction of human labelers who would mark a particular point as a contour.

Thus, in a sense, we are training the regression branch to implicitly mimic how human

labelers reason about the contour presence at a given point. In the experimental section, we

demonstrate that due to its selectivity, the regression branch produces contour predictions

with very high precision. In Fig. 6, we present several samples of ground truth data that

illustrate the different properties of our two end-objectives.

The number of hidden layers in the first and second fully connected layers of both branches

are 1024 and 512, respectively. Both branches optimize the sum of squared difference loss

over the (binary or continuous) labels. At testing time, the scalar outputs computed from

these two sub-networks are averaged to produce a final score indicative of the probability

that the candidate point is a contour. Visualization of this architecture is presented in

Fig. 5.

In order to train our sub-network, we generate patch examples and labels using training

images with ground truth annotations from multiple human labelers. To generate the binary

labels, we first sample 40, 000 positive examples that were marked as contours by at least

one of the labelers. To generate negative examples we consider the points that were selected

as candidate contour points by the Canny edge detector but that have not been marked as

contours by any of the human labelers. These are essentially false positives. For training, we

use a random subset of 40, 000 of such points in order to have equal proportion of negative

and positive examples. These 80, 000 examples are then used to train our classification

sub-network.
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In addition to the binary labels, we also generate continuous labels that are used to train

the regression network. For this purpose, we define the regression label of a point to be

the fraction of human labelers that marked the point as a contour. These 80, 000 examples

with continuous labels are then also used to train our regression sub-network.

1.3.2. Multi-Scale Architecture

In the previous section we presented a convolutional architecture for contour prediction

utilizing a single scale. However, in practice, we found that a multi-scale approach works

much better. In this section, we show how to modify the single-scale architecture so that it

can exploit multiple scales simultaneously.

Rather than extracting a patch at a single scale as we did in the previous section, in a

multi-scale setting we extract patches around the candidate point for different patch sizes

so that they cover different spatial extents of the image. We then resize the patches to

fit the KNet input and pump them in parallel through the five convolutional layers. Our

high-level features are then built by performing max, average and center pooling in a small

sub-volume of the feature map at each convolutional layer and at each scale. This effectively

increases the dimensionality of the feature vector by a factor equal to the number of scales

compared to the single-scale setting. These pooled features are then connected as before to

the two separately-trained network branches. A visualization of our multi-scale architecture

is shown in Fig. 3.

1.3.3. Implementation Details

In this section, we describe additional implementation details of our model. Our deep

network is implemented using the software library Caffe [16].

We use four different scales for our patches. The sizes of these patches are 64 × 64, 128 ×

128, 196× 196 and a full-sized image. All of the patches are then resized to the KNet input

dimensions of 227× 227.
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When extracting high-level features from the convolutional layers of KNet, we use sub-

volumes of convolutional feature maps having spatial sizes 7 × 7, 5 × 5, 3 × 3, 3 × 3, and

3 × 3 for the convolutional layers 1, 2, 3, 4, 5, respectively. Note that we shrink the size of

the subvolume as we go deeper in the network since the feature maps get smaller due to

pooling. Our choice of subvolume sizes is made to ensure we are roughly considering the

same spatial extent of the original image at each layer.

As illustrated in Fig. 5, during the training the weights in the convolutional layers are fixed

and only the weights in the fully connected layers of the two branches are learned.

To train our model we use the learning rate of 0.1, the dropout fraction of 0.5, 50 number

of epochs, and the size of the batch equal to 100.

As described earlier, to train classification and regression branches we sample 80, 000 ex-

amples with binary labels. We also generate continuous labels for these 80, 000 examples.

In addition, we sample a hold-out dataset of size 40, 000. This hold-out dataset is used for

the hard-positive mining step [49].

For the first 25 epochs we train classification and regression branches independently on the

original 80, 000 sample training dataset. After the first 25 epochs, we test both branches on

the hold-out dataset and detect false negative predictions made by each branch. We then

use these false negative examples along with the same number of randomly selected true

negative examples to augment our original 80, 000 training dataset. For the remaining 25

epochs, we train both branches on this augmented dataset.

The motivation for the hard-positive mining step is to reduce the number of false negative

predictions produced by both branches. By augmenting the original 80, 000 sized training

data with false negative examples, we are forcing both branches to focus on hard positive

examples, and thus, effectively reducing the number of false negative predictions.
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Input Images Canny Edges Raw DeepEdges Thresholded DeepEdges Ground Truth

Figure 7: Qualitative results produced by our method. Notice how our method learns to
distinguish between strong and weak contours. For instance, in the last row of predictions,
contours corresponding to zebra stripes are assigned much lower probabilities than contours
that correspond to the actual object boundaries separating the zebras from the background.

1.4. Experiments

In this section, we present our results on the BSDS500 dataset [50], which is arguably

the most established benchmark for contour detection. This dataset contains 200 training

images, 100 validation images, and 200 test images. Contour detection accuracy is evaluated

using three standard measures: fixed contour threshold (ODS), per-image best threshold

(OIS), and average precision (AP).

In section 1.4.1 we quantitatively compare our approach to the state-of-the-art. In sec-

tion 1.4.2 we study how the performance of our system changes as we modify some of

the architecture choices (number of scales, feature maps, pooling scheme, training objec-

tive). This will cast additional insight into the factors that critically contribute to the high

accuracy of our system.
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Method ODS OIS AP

gPb-owt-ucm [30] 0.726 0.757 0.696

Sketch Tokens [37] 0.727 0.746 0.780

PMI [42] 0.737 0.771 0.783

DeepNet [13] 0.738 0.759 0.758

SCG [39] 0.739 0.758 0.773

SE [15] 0.746 0.767 0.803

MCG [38] 0.747 0.779 0.759

N4-fields [12] 0.753 0.769 0.784

DeepEdge 0.753 0.772 0.807

Table 1: Edge detection results on the BSDS500 benchmark. Our DeepEdge method
achieves state-of-the-art contour detections results according to both F-score and AP met-
rics.

1.4.1. Comparison with Other Methods

We compare the results produced by our approach and previously proposed contour detec-

tion methods. Table 1 summarizes the results. We note that our algorithm achieves contour

detection accuracy that is higher or equal to state-of-the-art results according to two of the

three metrics.

Fig. 2 shows the precision and recall curve for the methods considered in our comparison. It

also lists the F-score for each method (in the legend). We observe that there is the accuracy

margin separating our approach from prior techniques. In particular, for low-recall our

method achieves almost perfect precision rate. It also produces state-of-the-art F-score.

1.4.2. Ablation Studies

Single Scale versus Multiple Scales. In this section we study the benefits of a multi-

scale architecture. Results in Table 2 report accuracy for different numbers and choices

of scales. The first four rows in the table illustrate the results achieved using a single-

scale approach. Specifically, these four cases show performance obtained when training and

testing our system with an input patch of size 64 × 64, 128 × 128, 196 × 196 or a full-sized

image, respectively. Note that adding information from multiple scales leads to significantly
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Scale ODS OIS AP

64 0.71 0.73 0.76

128 0.72 0.74 0.78

196 0.71 0.73 0.76

Full Image 0.67 0.69 0.57

64, 128 0.72 0.75 0.78

64, 128,196 0.72 0.75 0.78

64,128,196,Full Image 0.75 0.77 0.81

Table 2: Results illustrating the effect of using a multi-scale architecture. Considering
multiple scales for contour detection yields significantly higher accuracy relative to a single
scale approach.

higher F-scores and higher average precisions. Thus, these results suggest that a multi-scale

approach is highly advantageous in comparison to a single scale setting.

Advantages of Higher-Level Features. In this section, we examine the validity of

our earlier claim that higher-level object-features enhance contour detection accuracy. In

Table 3, we present individual contour detection results using features from the different

convolutional layers of KNet. Note that the 4th convolutional layer produces the most

effective features when considering one layer at a time. From our earlier discussion we know

that the 4th convolutional layer encodes higher-level object information related to shape

and specific object parts. This indicates that object specific cues are particularly beneficial

for contour detection accuracy.

We also observe that by incorporating features from all the convolutional layers, our method

achieves state-of-the-art contour detection results. This suggests that the features computed

by different layers are complementary and that considering information from the entire

hierarchy is advantageous.

Pooling Scheme. When presenting the architecture of our model, we discussed three

different types of pooling: max, average, and center pooling. These three techniques were

used to pool the values from the sub-volumes extracted around the center point in each

convolutional filter as illustrated in Fig. 5.
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Conv. Layers ODS OIS AP

1st 0.66 0.68 0.69

2nd 0.71 0.74 0.76

3rd 0.74 0.75 0.79

4th 0.74 0.76 0.79

5th 0.73 0.74 0.77

All 0.75 0.77 0.81

Table 3: This table shows the advantage of using higher-level features from the KNet
convolutional layers. Individually, the 4th convolutional layer produces the best contour
prediction results, which implies that higher-level object information is indeed beneficial for
contour detection. Combining the features from all convolutional layers leads to state-of-
the-art results.

Pooling Type ODS OIS AP

Average 0.73 0.75 0.78

Max 0.69 0.72 0.73

Center 0.74 0.76 0.8

Avg+Max+Cen 0.75 0.77 0.81

Table 4: Effect of different pooling schemes on contour detection results. Center pooling
produces better results than max or average pooling. Combining all three types of pooling
further improves the results.

We now show how each type of pooling affects contour detection results. Table 4 illustrates

that, individually, center pooling yields the best contour detection results. This is expected

because the candidate point for which we are trying to predict a contour probability is

located at the center of the input patch.

However, we note that combining all three types of pooling, achieves better contour detec-

tion results than any single pooling technique alone.

Bifurcation and Training Objective. Next, we want to show that that the two independently-

trained classification and regression branches in the bifurcated sub-network provide com-

plementary information that yields improved contour detection accuracy. In Table 5, we

present contour detection results achieved by using predictions from the individual branches

of the bifurcated sub-network.

From these results, we observe that using predictions just from the classification branch
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Branch ODS OIS AP

Classification 0.75 0.76 0.78

Regression 0.74 0.76 0.80

Classification+Regression 0.75 0.77 0.81

Table 5: Contour detection accuracy of the two branches in our bifurcated sub-network.
The classification branch yields solid F-score results whereas the regression branch achieves
high average precision. Averaging the outputs from these two branches further improve the
results.

produces high F-score whereas using predictions only from the regression branch yields

high average precision. Combining the predictions from both branches improves the re-

sults according to both metrics thus, supporting our claim that separately optimizing edge

classification and regression objectives is beneficial to contour detection.

1.4.3. Qualitative Results

Finally, we present qualitative results produced by our method. In Figure 7 we show for

each input image example, the set of candidate points produced by the Canny edge detector,

the un-thresholded predictions of our method, the thresholded predictions, and the ground

truth contour map computed as an average of the multiple manual annotations. To generate

the thresholded predictions, we use a probability threshold of 0.5.

Note that our method successfully distinguishes between strong and weak contours. Specif-

ically, observe that in the last row of Figure 7, our method assigns lower probability to

contours corresponding to zebra stripes compared to the contours of the actual object

boundary separating the zebras from the background. Thus, in the thresholded version

of the prediction, the weak contours inside the zebra bodies are removed and we obtain

contour predictions that look very similar to the ground truth.

Due to locality of our method, it may be beneficial to apply spectral methods [51, 41] or

conditional random fields [52] on top of our method to further improve its performance.
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1.4.4. Computational Cost

In its current form, our method requires about 60K KNet evaluations (15K per scale) to

extract the features. Based on the runtimes reported in [16], if executed on a GPU our

method would take about 5 minutes and could be made faster using the approach described

in [53].

An alternative way to dramatically reduce the runtime of DeepEdge is to interpolate the

entries of the feature maps produced by applying the KNet to the full image rather than to

individual patches. Such an approach would reduce the number of CNN evaluations needed

from 60K to 4 (one for each scale), which would allow our method to run in real time even

on CPUs. We note that interpolation of features in deep layers has been used successfully in

several recent vision papers [54, 55, 56]. Thus, we believe that such an approach could yield

nearly equivalent contour detection accuracy, up to a small possible degradation caused by

interpolation.

Since in this work we were primarily interested in studying the effective advantage enabled

by object-level features in contour detection, we have not invested any effort in optimizing

the implementation of our method. This will be one of our immediate goals in the future.

1.5. Conclusions

In this work, we presented a multi-scale bifurcated deep network for top-down contour

detection. In the past, contour detection has been approached as a bottom-up task where

low-level features are engineered first, then contour detection is performed, and finally

contours may be used as cues for object detection. However, due to a close relationship

between object and contour detection tasks, we proposed to invert this pipeline and perform

contour detection in a top-down fashion. We demonstrated how to use higher-level object

cues to predict contours and showed that considering higher-level object-features leads to a

substantial gain in contour detection accuracy.
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Additionally, we demonstrated that our multi-scale architecture is beneficial to contour pre-

diction as well. By considering multiple scales, our method incorporates local and global

information around the candidate contour points, which leads to significantly better con-

tour detection results. Furthermore, we showed that independent optimization of contour

classification and regression objectives improves contour prediction accuracy as well. As

our experiments indicate, DeepEdge achieves higher average precision results compared to

any prior or concurrent work.

In conclusion, our results suggest that pure CNN systems can be applied successfully to

contour detection and possibly to many other low-level vision tasks.
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CHAPTER 2 : High-for-Low and Low-for-High:

Efficient Boundary Detection from Deep Object Features

and its Applications to High-Level Vision

2.1. Introduction

In the vision community, boundary detection has always been considered a low-level prob-

lem. However, psychological studies suggest that when a human observer perceives bound-

aries, object level reasoning is used [57, 58, 59]. Despite these findings, most of the boundary

detection methods rely exclusively on low-level color and gradient features. In this work,

we present a method that uses object-level features to detect boundaries. We argue that

using object-level information to predict boundaries is more similar to how humans reason.

Our boundary detection scheme can be viewed as a High-for-Low approach where we use

high-level object features as cues for a low-level boundary detection process. Throughout

this paper, we refer to our proposed boundaries as High-for-Low boundaries (HfL).

We present an efficient deep network that uses object-level information to predict the bound-

aries. Our proposed architecture reuses features from the sixteen convolutional layers of the

network of Simonyan et al. [60], which we refer to as VGG net. The VGG net has been

trained for object classification, and therefore, reusing its features allows our method to uti-

lize high-level object information to predict HfL boundaries. In the experimental section, we

demonstrate that using object-level features produces semantically meaningful boundaries

and also achieves above state-of-the-art boundary detection accuracy.

Additionally, we demonstrate that we can successfully apply our HfL boundaries to a number

of high-level vision tasks. We show that by using HfL boundaries we improve the results of

three existing state-of-the-art methods on the tasks of semantic boundary labeling, semantic

segmentation and object proposal generation. Therefore, using HfL boundaries to boost the

results in high level vision tasks can be viewed as a Low-for-High scheme, where boundaries

serve as low-level cues to aid high-level vision tasks.
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Low-Level Task High-Level Tasks
BD SBL SS OP

ODS MF AP PI-IOU MR
SotA 0.76 [11] 28.0 [14] 19.9 [14] 45.8 [29] 0.88 [61]
HfL 0.77 62.5 54.6 48.8 0.90

Table 6: Summary of results achieved by our proposed method (HfL) and state-of-the-
art methods (SotA). We provide results on four vision tasks: Boundary Detection (BD),
Semantic Boundary Labeling (SBL), Semantic Segmentation (SS), and Object Proposal
(OP). The evaluation metrics include ODS F-score for BD task, max F-score (MF) and
average precision (AP) for SBL task, per image intersection over union (PI-IOU) for SS
task, and max recall (MR) for OP task. Our method produces better results in each of
these tasks according to these metrics.

We present the summarized results for the boundary detection and the three mentioned

high-level vision tasks in Table 6. Specifically, we compare our proposed method and an

appropriate state-of-the-art method for that task. As the results indicate, we achieve better

results in each of the tasks for each presented evaluation metric. We present more detailed

results for each of these tasks in the later sections.

In summary, our contributions are as follows. First, we show that using object-level fea-

tures for boundary detection produces perceptually informative boundaries that outperform

prior state-of-the-art boundary detection methods. Second, we demonstrate that we can

use HfL boundaries to enhance the performance on the high-level vision tasks of semantic

boundary labeling, semantic segmentation and object proposal. Finally, our method can

detect boundaries in near-real time. Thus, we present a boundary detection system that is

accurate, efficient, and is also applicable to high level vision tasks.

2.2. Related Work

Most of the contour detection methods predict boundaries based purely on color, text, or

other low-level features. We can divide these methods into three broad categories: spectral

methods, supervised discriminative methods and deep learning based methods.

Spectral methods formulate contour detection problem as an eigenvalue problem. The

solution to this problem is then used to reason about the boundaries. The most successful
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Figure 8: A visualization of selected convolutional feature maps from VGG network (resized
to the input image dimension). Because VGG was optimized for an object classification
task, it produces high activation values on objects and their parts.

approaches in this genre are the MCG detector [38], gPb detector [30], PMI detector [42],

and Normalized Cuts [41].

Some of the notable discriminative boundary detection methods include sketch tokens

(ST) [37], structured edges (SE) [15] and sparse code gradients (SCG) [39]. While SCG

use supervised SVM learning [40], the latter two methods rely on a random forest classifier

and models boundary detection as a classification task.

Recently there have been attempts to apply deep learning to the task of boundary detection.

SCT [43] is a sparse coding approach that reconstructs an image using a learned dictionary

and then detect boundaries. Both N4 fields [12] and DeepNet [13] approaches use Convolu-

tional Neural Networks (CNNs) to predict edges. N4 fields rely on dictionary learning and

the use of the Nearest Neighbor algorithm within a CNN framework while DeepNet uses a

traditional CNN architecture to predict contours.

The most similar to our approach is DeepEdge [1], which uses a multi-scale bifurcated

network to perform contour detection using object-level features. However, we show that

our method achieves better results even without the complicated multi-scale and bifurcated

architecture of DeepEdge. Additionally, unlike DeepEdge, our system can run in near-real

time.

In comparison to prior approaches, we offer several contributions. First, we propose to
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Figure 9: An illustration of our architecture (best viewed in color). First we extract a
set of candidate contour points. Then we upsample the image and feed it through 16
convolutional layers pretrained for object classification. For each candidate point, we find
its correspondence in each of the feature maps and perform feature interpolation. This
yields a 5504-dimensional feature vector for each candidate point. We feed each of these
vectors to two fully connected layers and store the predictions to produce a final boundary
map.

use object-level information to predict boundaries. We argue that such an approach leads

to semantic boundaries, which are more consistent with humans reasoning. Second, we

avoid feature engineering by learning boundaries from human-annotated data. Finally,

we demonstrate excellent results for both low-level and high-level vision tasks. For the

boundary detection task, our proposed HfL boundaries outperform all of the prior methods

according to both F-score metrics. Additionally, we show that because HfL boundaries are

based on object-level features, they can be used to improve performance in the high-level

vision tasks of semantic boundary labeling, semantic segmentation, and object proposal

generation.
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2.3. Boundary Detection

In this section, we describe our proposed architecture and the specific details on how we

predict HfL boundaries using our method. The detailed illustration of our architecture is

presented in Figure 9.

2.3.1. Technical Approach

Selection of Candidate Contour Points. We first extract a set of candidate contour

points with a high recall. Due to its efficiency and high recall performance, we use the

SE edge detector [15]. In practice, we could eliminate this step and simply try to predict

boundaries at every pixel. However, selecting a set of initial candidate contour points,

greatly reduces the computational cost. Since our goal is to build a boundary detector that

is both accurate and efficient, we use these candidate points to speed up the computation

of our method.

Object-Level Features. After selecting candidate contour points, we up-sample the orig-

inal input image to a larger dimension (for example 1100× 1100). The up-sampling is done

to minimize the loss of information due to the input shrinkage caused by pooling at the

different layers. Afterwards, we feed the up-sampled image through 16 convolutional layers

of the VGG net.

We use the VGG net as our model because it has been trained to recognize a large number of

object classes (the 1000 categories of the ImageNet dataset [45]) and thus encodes object-

level features that apply to many classes. To preserve specific location information we

utilize only the 16 convolutional layers of the VGG net. We don’t use fully connected layers

because they don’t preserve spatial information, which is crucial for accurate boundary

detection.

We visualize some of the selected convolutional maps in Figure 8. Note the high activation

values around the various objects in the images, which confirms our hypothesis that the
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VGG net encodes object specific information in its convolutional feature maps.

Feature Interpolation. Similarly to [54, 55, 27], we perform feature interpolation in deep

layers. After the up-sampled image passes through all 16 convolutional layers, for each

selected candidate contour point we find its corresponding point in the feature maps. Due

to the dimension differences in convolutional maps these correspondences are not exact.

Thus we perform feature interpolation by finding the four nearest points and averaging

their activation values. This is done in each of the 5504 feature maps. Thus, this results in

a 5504-dimensional vector for each candidate point.

We note that the interpolation of convolutional feature maps is the crucial component that

enables our system to predict the boundaries efficiently. Without feature interpolation, our

method would need to independently process the candidate edge points by analyzing a small

image patch around each point, as for example done in DeepEdge [1] which feeds one patch

at a time through a deep network. However, when the number of candidate points is large

(e.g., DeepEdge considers about 15K points at each of 4 different scales), their patches

overlap significantly and thus a large amount of computation is wasted by recalculating

filter response values over the same pixels. Instead, we can compute the features for all

candidate points with a single pass through the network by performing deep convolution

over the entire image (i.e., feeding the entire image rather than one patch at a time) and

then by interpolating the convolutional feature maps at the location of each candidate edge

point so as to produce its feature descriptor. Thanks to this speedup, our method has

a runtime of 1.2 seconds (using a K40 GPU), which is better than the runtimes of prior

deep-learning based edge detection methods [11, 12, 13, 1].

Learning to Predict Boundaries. After performing feature interpolation, we feed the

5504-dimensional feature vectors corresponding to each of the candidate contour points to

two fully connected layers that are optimized to the human agreement criterion. To be

more precise, we define our prediction objective as a fraction of human annotators agreeing

on the presence of the boundary at a particular pixel. Therefore, a learning objective aims
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at mimicking the judgement of the human labelers.

Finally, to detect HfL boundaries, we accumulate the predictions from the fully connected

layers for each of the candidate points and produce a boundary probability map as illustrated

in Figure 9.

2.3.2. Implementation Details

In this section, we describe the details behind the training procedure of our model. We use

the Caffe library [16] to implement our network architecture.

In the training stage, we freeze the weights in all of the convolutional layers. To learn the

weights in the two fully connected layers we train our model to optimize the least squares

error of the regression criterion that we described in the previous subsection. To enforce

regularization we set a dropout rate of 0.5 in the fully connected layers.

Our training dataset includes 80K points from the BSDS500 dataset [50]. As described in

the previous subsection, the labels represent the fraction of human annotators agreeing on

the boundary presence. We divide the label space into four quartiles, and select an equal

number of samples for each quartile to balance the training dataset. In addition to the

training dataset, we also sample a hold-out dataset of size 40, 000. We use this for the

hard-positive mining [49] in order to reduce the number of false-negative predictions.

For the first 25 epochs we train the network on the original 80, 000 training samples. After

the first 25 epochs, we test the network on the hold-out dataset and detect false negative

predictions made by our network. We then augment the original 80, 000 training samples

with the false negatives and the same number of randomly selected true negatives. For the

remaining 25 epochs, we train the network on this augmented dataset.

2.3.3. Boundary Detection Results

In this section, we present our results on the BSDS500 dataset [50], which is the most

established benchmark for boundary detection. The quality of the predicted boundaries is
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Consensus GT ODS OIS AP FPS

SCG [39] 0.6 0.64 0.56 1/280

DeepNet [13] 0.61 0.64 0.61 1/5‡

PMI [42] 0.61 0.68 0.56 1/900

DeepEdge [1] 0.62 0.64 0.64 1/1000‡

N4-fields [12] 0.64 0.67 0.64 1/6‡

HfL 0.65 0.68 0.67 5/6‡

Any GT ODS OIS AP FPS

SE [15] 0.75 0.77 0.80 2.5

MCG [38] 0.75 0.78 0.76 1/24

N4-fields [12] 0.75 0.77 0.78 1/6‡

DeepEdge [1] 0.75 0.77 0.81 1/1000‡

MSC [62] 0.76 0.78 0.79 -

DeepContour [11] 0.76 0.77 0.8 1/30‡

HfL 0.77 0.79 0.8 5/6‡

Table 7: Boundary detection results on BSDS500 benchmark. Upper half of the table
illustrates the results for “consensus” ground-truth criterion while the lower half of the table
depicts the results for “any” ground-truth criterion. In both cases, our method outperforms
all prior methods according to both ODS (optimal dataset scale) and OIS (optimal image
scale) metrics. We also report the run-time of our method (‡ GPU time) in the FPS column
(frames per second), which shows that our algorithm is faster than prior approaches based
on deep learning [11, 12, 13, 1].

evaluated using three standard measures: fixed contour threshold (ODS), per-image best

threshold (OIS), and average precision (AP).

We compare our approach to the state-of-the-art based on two different sets of BSDS500

ground truth boundaries. First, we evaluate the accuracy by matching each of the predicted

boundary pixels with the ground truth boundaries that were annotated by any of the human

annotators. This set of ground truth boundaries is referred to as “any”. We present the

results for “any” ground truth boundaries in the lower half of Table 7. As indicated by

the results, HfL boundaries outperform all the prior methods according to both F-score

measures.

Recently, there has been some criticism raised about the procedure for boundary detection

evaluation on the BSDS500 dataset. One issue with the BSDS500 dataset involves the

so called “orphan” boundaries: the boundaries that are marked by only one or two human
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Figure 10: Qualitative results on the BSDS benchmark. The first column of images represent
input images. The second column illustrates SE [15], while the third column depicts HfL
boundaries. Notice that SE boundaries are predicted with low confidence if there is no
significant change in color between the object and the background. Instead, because our
model is defined in terms of object-level features, it can predict object boundaries with high
confidence even if there is no significant color variation in the scene.

annotators. These “orphan” boundaries comprise around 30% of BSDS500 dataset but most

of them are considered uninformative. However, the standard evaluation benchmark rewards

the methods that predict these boundaries. To resolve this issue we also evaluate our HfL

boundaries on the so called “consensus” set of ground truth boundaries. These “consensus”

boundaries involve only boundaries that are marked by all of the human annotators and

hence, are considered perceptually meaningful. In the upper half of Table 7, we present

the results achieved by our method on the “consensus” set of the ground truth boundaries.

Our HfL boundaries outperform or tie all the prior methods in each of the three evaluation

metrics, thus suggesting that HfL boundaries are similar to the boundaries that humans

annotated. We also report the runtimes in Table 7 and note that our method runs faster

than previous deep-learning based edge detection systems [11, 12, 13, 1].

Our proposed model computes a highly nonlinear function of the 5504-dimensional feature

vector of each candidate point. Thus, it is difficult to assess which features are used most

heavily by our edge predictor. However, we can gain a better insight by replacing the
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Figure 11: We train a linear regression model and visualize its weight magnitudes in order
to understand which features are used most heavily in the boundary prediction (this linear
regression is used only for the visualization purposes and not for the accuracy analysis).
Note how heavily weighted features lie in the deepest layers of the network, i.e., the layers
that are most closely associated with object information.

nonlinear function with a simple linear model. In Fig. 11 we show the weight magnitudes

of a simple linear regression model (we stress that this linear model is used only for feature

visualization purposes). From this Figure, we observe that many important features are

located in the deepest layers of the VGG network. As shown in [63], these layers encode

high-level object information, which confirms our hypothesis that high-level information is

useful for boundary detection.

Finally, we present some qualitative results achieved by our method in Figure 10. These

examples illustrate the effective advantage that HfL boundaries provide over another state-

of-the-art edge detection system, the SE system [15]. Specifically, observe the parts of

the image where there is a boundary that separates an object from the background but

where the color change is pretty small. Notice that because the SE boundary detection is

based on low-level color and texture features, it captures these boundaries with very low

confidence. In comparison, because HfL boundaries rely on object-level features, it detects

these boundaries with high confidence.

2.4. High-Level Vision Applications

In this section, we describe our proposed Low-for-High pipeline: using low-level boundaries

to aid a number of high-level vision tasks. We focus on the tasks of semantic boundary

labeling, semantic segmentation and object proposal generation. We show that using HfL
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Method (Metric) aero bike bird boat bottle bus car cat chair cow

InvDet (MF) 42.6 49.5 15.7 16.8 36.7 43.0 40.8 22.6 18.1 26.6
HfL-FC8 (MF) 71.6 59.6 68.0 54.1 57.2 68.0 58.8 69.3 43.3 65.8
HfL-CRF (MF) 73.9 61.4 74.6 57.2 58.8 70.4 61.6 71.9 46.5 72.3

InvDet (AP) 38.4 29.6 9.6 9.9 24.2 33.6 31.3 17.3 10.7 16.4
HfL-FC8 (AP) 66.0 50.7 58.9 40.6 47.1 62.9 51.0 59.0 25.6 54.6
HfL-CRF (AP) 71.2 55.2 69.3 45.7 48.9 71.1 56.8 65.7 29.1 65.9

Method (Metric) table dog horse mbike person plant sheep sofa train tv

InvDet (MF) 10.2 18.0 35.2 29.4 48.2 14.3 26.8 11.2 22.2 32.0
HfL-FC8 (MF) 33.3 67.9 67.5 62.2 69.0 43.8 68.5 33.9 57.7 54.8
HfL-CRF (MF) 36.2 71.1 73.0 68.1 70.3 44.4 73.2 42.6 62.4 60.1

InvDet (AP) 3.7 12.1 28.5 20.4 45.7 7.6 16.1 5.7 14.6 22.7
HfL-FC8 (AP) 15.3 57.8 57.3 55.9 62.2 27.5 55.6 18.0 50.1 40.6
HfL-CRF (AP) 17.7 64.5 68.3 64.7 65.9 29.1 66.5 25.7 60.0 49.8

Table 8: Results of semantic boundary labeling on the SBD benchmark using the Max
F-score (MF) and Average Precision (AP) metrics. Our method (HfL) outperforms Inverse
Detectors [14] for all 20 categories according to both metrics. Note that using the CRF
output to label the boundaries produces better results than using the outputs from the FC8
layer of FCN.

boundaries improves the performance of state-of-the-art methods in each of these high-level

vision tasks.

2.4.1. Semantic Boundary Labeling

The task of semantic boundary labeling requires not only to predict the boundaries but also

to associate a specific object class to each of the boundaries. This implies that given our

predicted boundaries we also need to label them with object class information. We approach

this problem by adopting the ideas from the recent work on Fully Convolutional Networks

(FCN) [27]. Given an input image, we concurrently feed it to our boundary-predicting

network (described in Section 2.3), and also through the FCN that was pretrained for 20

Pascal VOC classes and the background class. While our proposed network produces HfL

boundaries, the FCN model predicts class probabilities for each of the pixels. We can then

merge the two output maps as follows. For a given boundary point we consider a 9× 9 grid

around that point from each of the 21 FCN object-class probability maps. We calculate

the maximum value inside each grid, and then label the boundary at a given pixel with the

object-class that corresponds to the maximum probability across these 21 maps. We apply
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this procedure for each of the boundary points, in order to associate object-class labels to

the boundaries. Note that we consider the grids around the boundary pixel because the

output of the FCN has a poor localization, and considering the grids rather than individual

pixels leads to higher accuracy.

We can also merge HfL boundaries with the state-of-the-art DeepLab-CRF segmenta-

tion [29] to obtain higher accuracy. We do this in a similar fashion as just described.

First, around a given boundary point we extract a 9× 9 grid from the DeepLab-CRF seg-

mentation. We then compute the mode value in the grid (excluding the background class),

and use the object-class corresponding to the mode value as a label for the given boundary

point. We do this for each of the boundary points. By merging HfL boundaries and the

output of FCN or DeepLab-CRF, we get semantic boundaries that are highly localized and

also contain object-specific information.

Semantic Boundary Labeling Results

In this section, we present semantic boundary labeling results on the SBD dataset [14],

which includes ground truth boundaries that are also labeled with one of 20 Pascal VOC

classes. The boundary detection accuracy for each class is evaluated using the maximum

F-score (MF), and average precision (AP) measures.

Labeling boundaries with the semantic object information is a novel and still relatively

unexplored problem. Therefore, we found only one other approach (Inverse Detectors)

that tried to tackle this problem [14]. The basic idea behind Inverse Detectors consists

of several steps. First, generic boundaries in the image are detected. Then, a number of

object proposal boxes are generated. These two sources of information are then used to

construct the features. Finally, a separate classifier is used to label the boundaries with the

object-specific information.

Table 8 shows that our approach significantly outperforms Inverse Detectors according to

both the maximum F-score and the average precision metrics for all twenty categories. As
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Figure 12: A visualization of the predicted semantic boundary labels. Images in the first
column are input examples. Columns two and three show semantic HfL boundaries of
different object classes. Note that even with multiple objects appearing simultaneously, our
method outputs precise semantic boundaries.

described in Section 2.4.1 we evaluate the two variants of our method. Denoted by HfL-FC8

is the variant for which we label HfL boundaries with the outputs from the last layer (FC8)

of the pretrained FCN. We denote with HfL-CRF the result of labeling our boundaries with

the output from the DeepLab-CRF [29]. Among these two variants, we show that the latter

one produces better results. This is expected since the CRF framework enforces spatial

coherence in the semantic segments.

In Figure 12, we present some of the qualitative results produced by our method. We

note that even with multiple objects in the image, our method successfully recognizes and

localizes boundaries of each of the classes.

2.4.2. Semantic Segmentation

For the semantic segmentation task, we propose to enhance the DeepLab-CRF [29] with our

predicted HfL boundaries. DeepLab-CRF is a system comprised of a Fully Convolutional

Network (described in Section 2.4.1) and a dense CRF applied on top of FCN predictions.

Specifically, in the CRF, the authors propose to use a Gaussian kernel and a bilateral term
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Metric Method (Dataset) mean

PP-IOU

DL-CRF (VOC) 68.9
DL-CRF+HfL (VOC) 68.5

DL-CRF (SBD) 71.4
DL-CRF+HfL (SBD) 71.4

Metric Method (Dataset) mean

PI-IOU

DL-CRF (VOC) 44.6
DL-CRF+HfL (VOC) 46.5

DL-CRF (SBD) 45.8
DL-CRF+HfL (SBD) 48.8

Table 9: Semantic segmentation results on the SBD and VOC 2007 datasets. We measure
the results according to PP-IOU (per pixel) and PI-IOU (per image) evaluation metrics. We
denote the original DeepLab-CRF system and our proposed modification as DL-CRF and
DL-CRF+HfL, respectively. According to the PP-IOU metric, our proposed features (DL-
CRF+HfL) yield almost equivalent results as the original DeepLab-CRF system. However,
based on PI-IOU metric, our proposed features improve the mean accuracy by 3% and 1.9%
on SBD and VOC 2007 datasets respectively.

including position and color terms as the CRF features (see [29]). While in most cases the

proposed scheme works well, DeepLab-CRF sometimes produces segmentations that are not

spatially coherent, particularly for images containing small object regions.

We propose to address this issue by adding features based on our predicted HfL boundaries

in the CRF framework. Note that we use predicted boundaries from Section 2.3 and not

the boundaries labeled with the object information that we obtained in Section 2.4.1. We

use the Normalized Cut [41] framework to generate our features.

First, we construct a pixel-wise affinity matrix W using our HfL boundaries. We measure

the similarity between two pixels as:

Wij = exp (−max
p∈ij
{M(p)2

σ2
})

where Wij represents the similarity between pixels i and j, p denotes the boundary point

along the line segment ij connecting pixels i and j, M depicts the magnitude of the boundary

at pixel p, and σ denotes the smoothness parameter, which is usually set to 14% of the

maximum boundary value in the image.
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The intuitive idea is that two pixels are similar (i.e. Wij = 1) if there is no boundary

crossing the line connecting these two pixels (i.e. M(p) = 0 ∀p ∈ ij) or if the boundary

strength is low. We note that it is not necessary to build a full affinity matrix W . We build

a sparse affinity matrix connecting every pair of pixels i and j that have distance 5 or less

from each other.

After building a boundary-based affinity matrix W we set Dii =
∑

i 6=jWij and compute

eigenvectors v of the generalized eigenvalue system:

(D−W)v = λDv

We then resize the eigenvectors v to the original image dimensions, and use them as addi-

tional features to the CRF part of DeepLab-CRF system. In our experiments, we use the

16 eigenvectors corresponding to the smallest eigenvalues, which results in 16 extra feature

channels.

Note that the eigenvectors contain soft segmentation information. Because HfL boundaries

predict object-level contours with high confidence, the eigenvectors often capture regions

corresponding to objects. We visualize a few selected eigenvectors in Figure 13. In the

experimental section, we demonstrate that our proposed features make the output produced

by DeepLab-CRF more spatially coherent and improve the segmentation accuracy according

to one of the metrics.

We also note that our proposed features are applicable to any generic method that in-

corporates CRF. For instance, even if DeepLab-CRF used an improved DeepLab network

architecture, our features would still be beneficial because they contribute directly to the

CRF part and not the DeepLab network part of the system.

38



Figure 13: In this figure, the first column depicts an input image while the second and
third columns illustrate two selected eigenvectors for that image. The eigenvectors contain
soft segmentation information. Because HfL boundaries capture object-level boundaries,
the resulting eigenvectors primarily segment regions corresponding to the objects.

Semantic Segmentation Results

In this section, we present semantic segmentation results on the SBD [14] and also Pascal

VOC 2007 [64] datasets, which both provide ground truth segmentations for 20 Pascal

VOC classes. We evaluate the results in terms of two metrics. The first metric measures

the accuracy in terms of pixel intersection-over-union averaged per pixel (PP-IOU) across

the 20 classes. According to this metric, the accuracy is computed on a per pixel basis. As

a result, the images that contain large object regions are given more importance.

We observe that while DeepLab-CRF works well on the images containing large object

regions, it produces spatially disjoint outputs for the images with smaller and object regions

(see Figure 14). This issue is often being overlooked, because according to the PP-IOU

metric, the images with large object regions are given more importance and thus contribute

more to the accuracy. However, certain applications may require accurate segmentation of

small objects. Therefore, in addition to PP-IOU, we also consider the PI-IOU metric (pixel

intersection-over-union averaged per image across the 20 classes), which gives equal weight
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to each of the images.

For both of the metrics we compare the semantic segmentation results of a pure DeepLab-

CRF [29] and also a modification of DeepLab-CRF with our proposed features added to the

CRF framework. We present the results for both of the metrics in Table 9.

Based on these results, we observe that according to the first metric (PP-IOU), our proposed

features yield almost equivalent results as the original DeepLab-CRF system. However,

according to the second metric (PI-IOU) our features yield an average improvement of 3%

and 1.9% in SBD and VOC 2007 datasets respectively.

We also visualize the qualitative results produced by both approaches in Figure 14. Notice

how our proposed features make the segmentations look smoother relative to the segmen-

tations produced by the original DeepLab-CRF system.

Once again, we want to stress that our HfL features are applicable to any method that

uses the CRF. Therefore, based on the results presented in this section, we believe that our

proposed features could be beneficial in a wide array of problems that involve the use of

the CRF framework.

2.4.3. Object Proposals

Finally, we show that our method produces object-level boundaries that can be successfully

exploited in an object proposal scheme. Specifically we adopt the EdgeBoxes approach [61],

which can be applied to any generic boundaries to produce a list of object proposal boxes.

The original EdgeBoxes method uses SE boundaries to generate the boxes. However, SE

boundaries are predicted using low-level color and texture features, rather than object-

level features. Thus, here we validate the hypothesis that the EdgeBoxes proposals can be

improved by replacing the SE boundaries with our HfL boundaries.

40



Figure 14: An illustration of the more challenging semantic segmentation examples. The
first column depicts the predictions achieved by DeepLab-CRF, while the second column
illustrates the results after adding our proposed features to the CRF framework. The last
column represents ground truth segmentations. Notice how our proposed features render
the predicted semantic segments more spatially coherent and overall more accurate.

Object Proposal Results

In this section, we present object proposal results on the Pascal VOC 2012 dataset [65]. We

evaluate the quality of bounding-box proposals according to three metrics: area under the

curve (AUC), the number of proposals needed to reach recall of 75%, and the maximum

recall over 5000 object bounding-boxes. Additionally, we compute the accuracy for each

of the metrics for three different intersection over union (IOU) values: 0.65, 0.7, and 0.75.

We present these results in Table 10. As described in Section 2.4.3, we use EdgeBoxes [61],

a package that uses generic boundaries, to generate object proposals. We compare the

quality of the generated object proposals when using SE boundaries and HfL boundaries.

We demonstrate that for each IOU value and for each of the three evaluation metrics,

HfL boundaries produce better or equivalent results. This confirms our hypothesis that

HfL boundaries can be used effectively for high-level vision tasks such as generating object

proposals.
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Method
IoU 0.65 IoU 0.7 IoU 0.75

AUC N@75% Recall AUC N@75% Recall AUC N@75% Recall

SE 0.52 413 0.93 0.47 658 0.88 0.41 inf 0.75
HfL 0.53 365 0.95 0.48 583 0.9 0.41 2685 0.77

Table 10: Comparison of object proposal results. We compare the quality of object proposals
using Structured Edges [15] and HfL boundaries. We evaluate the performance for three
different IOU values and demonstrate that using HfL boundaries produces better results
for each evaluation metric and for each IOU value.

2.5. Conclusions

In this work, we presented an efficient architecture that uses object-level information to pre-

dict semantically meaningful boundaries. Most prior edge detection methods rely exclusively

on low-level features, such as color or texture, to detect the boundaries. However, percep-

tion studies suggest that humans employ object-level reasoning when deciding whether a

given pixel is a boundary [57, 58, 59]. Thus, we propose a system that focuses on the seman-

tic object-level cues rather than low level image information to detect the boundaries. For

this reason we refer to our boundary detection scheme as a High-for-Low approach, where

high-level object features inform the low-level boundary detection process. In this paper

we demonstrated that our proposed method produces boundaries that accurately separate

objects and the background in the image and also achieve higher F-score compared to any

prior work.

Additionally, we showed that, because HfL boundaries are based on object-level features,

they can be employed to aid a number of high level vision tasks in a Low-for-High fashion.

We use our boundaries to boost the accuracy of state-of-the-art methods on the high-level

vision tasks of semantic boundary labeling, semantic segmentation, and object proposals

generation. Using HfL boundaries leads to better results in each of these tasks.

To conclude, our boundary detection method is accurate, efficient, applicable to a variety of

datasets, and also useful for multiple high-level vision tasks. We plan to release the source

code for HfL upon the publication of the paper .
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CHAPTER 3 : Semantic Segmentation with Boundary Neural Fields

3.1. Introduction

The recent introduction of fully convolutional networks (FCNs) [27] has led to significant

quantitative improvements on the task of semantic segmentation. However, despite their

empirical success, FCNs suffer from some limitations. Large receptive fields in the convolu-

tional layers and the presence of pooling layers lead to blurring and segmentation predictions

at a significantly lower resolution than the original image. As a result, their predicted seg-

ments tend to be blobby and lack fine object boundary details. We report in Fig. 15 some

examples illustrating typical poor localization of objects in the outputs of FCNs.

Recently, Chen at al. [29] addressed this issue by applying a Dense-CRF post-processing

step [28] on top of coarse FCN segmentations. However, such an approach introduces several

problems of its own. First, the Dense-CRF adds new parameters that are difficult to tune

and integrate into the original network architecture. Additionally, most methods based on

CRFs or MRFs use low-level pixel affinity functions, such as those based on color. These

low-level affinities often fail to capture semantic relationships between objects and lead to

poor segmentation results (see last column in Fig. 15).

We propose to address these shortcomings by means of a Boundary Neural Field (BNF), an

architecture that employs a single semantic segmentation FCN to predict semantic bound-

aries and then use them to produce semantic segmentation maps via a global optimization.

We demonstrate that even though the semantic segmentation FCN has not been optimized

to detect boundaries, it provides good features for boundary detection. Specifically, the

contributions of our work are as follows:

• We show that semantic boundaries can be expressed as a linear combination of inter-

polated convolutional feature maps inside an FCN. We introduce a boundary detection

method that exploits this intuition to predict object boundaries with accuracy supe-
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Figure 15: Examples illustrating shortcomings of prior semantic segmentation methods:
the second column shows results obtained with a FCN [27], while the third column shows
the output of a Dense-CRF applied to FCN predictions [28, 29]. Segments produced by
FCN are blob-like and are poorly localized around object boundaries. Dense-CRF produces
spatially disjoint object segments due to the use of a color-based pixel affinity function that
is unable to measure semantic similarity between pixels.

rior to the state-the-of-art.

• We demonstrate that boundary-based pixel affinities are better suited for semantic

segmentation than the commonly used color affinity functions.

• Finally, we introduce a new global energy that decomposes semantic segmentation into

multiple binary problems and relaxes the integrality constraint. We show that mini-

mizing our proposed energy yields better qualitative and quantitative results relative

to traditional globalization models such as MRFs or CRFs.

3.2. Related Work

Boundary Detection. Spectral methods comprise one of the most prominent categories

for boundary detection. In a typical spectral framework, one formulates a generalized

eigenvalue system to solve a low-level pixel grouping problem. The resulting eigenvectors

are then used to predict the boundaries. Some of the most notable approaches in this
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genre are MCG [38], gPb [30], PMI [42], and Normalized Cuts [41]. A weakness of spectral

approaches is that they are slow as they perform a global inference over the entire image.

To address this issue, recent approaches cast boundary detection as a classification problem

and predict the boundaries in a local manner with high efficiency. The most notable ex-

amples in this genre include sketch tokens (ST) [37] and structured edges (SE) [15], which

employ fast random forests. However, many of these methods are based on hand-constructed

features, which are difficult to tune.

The issue of hand-constructed features have been recently addressed by several approaches

based on deep learning, such asN4 fields [12], DeepNet [13], DeepContour [11], DeepEdge [1],

HfL [2] and HED [66]. All of these methods use CNNs in some way to predict the bound-

aries. Whereas DeepNet and DeepContour optimize ordinary CNNs to a boundary based

optimization criterion from scratch, DeepEdge and HfL employ pretrained models to com-

pute boundaries. The most recent of these methods is HED [66], which shows the benefit

of deeply supervised learning for boundary detection.

In comparison to prior deep learning approaches, our method offers several contributions.

First, we exploit the inherent relationship between boundary detection and semantic seg-

mentation to predict semantic boundaries. Specifically, we show that even though the

semantic FCN has not been explicitly trained to predict boundaries, the convolutional fil-

ters inside the FCN provide good features for boundary detection. Additionally, unlike

DeepEdge [1] and HfL [2], our method does not require a pre-processing step to select can-

didate contour points, as we predict boundaries on all pixels in the image. We demonstrate

that our approach allows us to achieve state-of-the-art boundary detection results according

to both F-score and Average Precision metrics. Additionally, due to the semantic nature of

our boundaries, we can successfully use them as pairwise potentials for semantic segmen-

tation in order to improve object localization and recover fine structural details, typically

lost by pure FCN-based approaches.
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Semantic Segmentation. We can group most semantic segmentation methods into three

broad categories. The first category can be described as “two-stage” approaches, where an

image is first segmented and then each segment is classified as belonging to a certain object

class. Some of the most notable methods that belong to this genre include [67, 68, 69, 70].

The primary weakness of the above methods is that they are unable to recover from errors

made by the segmentation algorithm. Several recent papers [55, 71] address this issue by

proposing to use deep per-pixel CNN features and then classify each pixel as belonging

to a certain class. While these approaches partially address the incorrect segmentation

problem, they perform predictions independently on each pixel. This leads to extremely

local predictions, where the relationships between pixels are not exploited in any way, and

thus the resulting segmentations may be spatially disjoint.

The third and final group of semantic segmentation methods can be viewed as front-to-end

schemes where segmentation maps are predicted directly from raw pixels without any inter-

mediate steps. One of the earliest examples of such methods is the FCN introduced in [27].

This approach gave rise to a number of subsequent related approaches which have improved

various aspects of the original semantic segmentation [29, 72, 73, 74, 75]. There have also

been attempts at integrating the CRF mechanism into the network architecture [29, 72]. Fi-

nally, it has been shown that semantic segmentation can also be improved using additional

training data in the form of bounding boxes [73].

Our BNF offers several contributions over prior work. To the best of our knowledge, we are

the first to present a model that exploits the relationship between boundary detection and

semantic segmentation within a FCN framework. We introduce pairwise pixel affinities

computed from semantic boundaries inside an FCN, and use these boundaries to predict the

segmentations in a global fashion. Unlike [75], which requires a large number of additional

parameters to learn for the pairwise potentials, our global model only needs ≈ 5K extra

parameters, which is about 3 orders of magnitudes less than the number of parameters

in a typical deep convolutional network (e.g. VGG [60]). We empirically show that our
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Figure 16: We employ a semantic segmentation FCN [29] for two purposes: 1) to obtain
semantic segmentation unaries for our global energy; 2) to compute object boundaries.
Specifically, we define semantic boundaries as a linear combination of these feature maps
(with a sigmoid function applied on top of the sum) and learn individual weights corre-
sponding to each convolutional feature map. We integrate this boundary information in the
form of pairwise potentials (pixel affinities) for our energy model.

proposed boundary-based affinities are better suited for semantic segmentation than color-

based affinities. Additionally, unlike in [29, 72, 75], the solution to our proposed global

energy can be obtained in closed-form, which makes global inference easier. Finally we

demonstrate that our method produces better results than traditional globalization models

such as CRFs or MRFs.

3.3. Boundary Neural Fields

In this section, we describe Boundary Neural Fields. Similarly to traditional globalization

methods, Boundary Neural Fields are defined by an energy including unary and pairwise

potentials. Minimization of the global energy yields the semantic segmentation. BNFs build

both unary and pairwise potentials from the input RGB image and then combine them in

a global manner. More precisely, the coarse segmentations predicted by a semantic FCN

are used to define the unary potentials of our BNF. Next, we show that the convolutional
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feature maps of the FCN can be used to accurately predict semantic boundaries. These

boundaries are then used to build pairwise pixel affinities, which are used as pairwise po-

tentials by the BNF. Finally, we introduce a global energy function, which minimizes the

energy corresponding to the unary and pairwise terms and improves the initial FCN seg-

mentation. The detailed illustration of our architecture is presented in Figure 16. We now

explain each of these steps in more detail.

3.3.1. FCN Unary Potentials

To predict semantic unary potentials we employ the DeepLab model [29], which is a fully

convolutional adaptation of the VGG network [60]. The FCN consists of 16 convolutional

layers and 3 fully convolutional layers. There are more recent FCN-based methods that

have demonstrated even better semantic segmentation results [73, 72, 74, 75]. Although

these more advanced architectures could be integrated into our framework to improve our

unary potentials, in this work we focus on two aspects orthogonal to this prior work: 1)

demonstrating that our boundary-based affinity function is better suited for semantic seg-

mentation than the common color-based affinities and 2) showing that our proposed global

energy achieves better qualitative and quantitative semantic segmentation results in com-

parison to prior globalization models.

3.3.2. Boundary Pairwise Potentials

In this section, we describe our approach for building pairwise pixel affinities using semantic

boundaries. The basic idea behind our boundary detection approach is to express semantic

boundaries as a function of convolutional feature maps inside the FCN. Due to the close

relationship between the tasks of semantic segmentation and boundary detection, we hy-

pothesize that convolutional feature maps from the semantic segmentation FCN can be

employed as features for boundary detection.
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Figure 17: An input image and convolutional feature maps corresponding to the largest
weight magnitude values. Intuitively these are the feature maps that contribute most heavily
to the task of boundary detection.

Learning to Predict Semantic Boundaries.

We propose to express semantic boundaries as a linear combination of interpolated FCN

feature maps with a non-linear function applied on top of this sum. We note that inter-

polation of feature maps has been successfully used in prior work (see e.g. [55]) in order

to obtain dense pixel-level features from the low-resolution outputs of deep convolutional

layers. Here we adopt interpolation to produce pixel-level boundary predictions. There are

several advantages to our proposed formulation. First, because we express boundaries as a

linear combination of feature maps, we only need to learn a small number of parameters,

corresponding to the individual weight values of each feature map in the FCN. This amounts

to ≈ 5K learning parameters, which is much smaller than the number of parameters in the

entire network (≈ 15M). In comparison, DeepEdge [1] and HFL [2] need 17M and 6M

additional parameters to predict boundaries.

Additionally, expressing semantic boundaries as a linear combination of FCN feature maps

allows us to efficiently predict boundary probabilities for all pixels in the image (we resize
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the FCN feature maps to the original image dimensions). This eliminates the need to select

candidate boundary points in a pre-processing stage, which was instead required in prior

boundary detection work [1, 2].

Our boundary prediction pipeline can be described as follows. First we use use SBD seg-

mentations [14] to optimize our FCN for semantic segmentation task. We then treat FCN

convolutional maps as features for the boundary detection task and use the boundary an-

notations from BSDS 500 dataset [50] to learn the weights for each feature map. BSDS

500 dataset contains 200 training, 100 validation, 200 testing images, and ground truth

annotations by 5 human labelers for each of these images.

To learn the weights corresponding to each convolutional feature map we first sample 80K

points from the dataset. We define the target labels for each point as the fraction of human

annotators agreeing on that point being a boundary. To fix the issue of label imbalance

(there are many more non-boundaries than boundaries), we divide the label space into four

quartiles, and select an equal number of samples for each quartile to balance the training

dataset. Given these sampled points, we then define our features as the values in the

interpolated convolutional feature maps corresponding to these points. To predict semantic

boundaries we weigh each convolutional feature map by its weight, sum them up and apply

a sigmoid function on top of it. We obtain the weights corresponding to each convolutional

feature map by minimizing the cross-entropy loss using a stochastic batch gradient descent

for 50 epochs. To obtain crisper boundaries at test-time we post-process the boundary

probabilities using non-maximum suppression.

To give some intuition on how FCN feature maps contribute to boundary detection, in

Fig. 17 we visualize the feature maps corresponding to the highest weight magnitudes. It

is clear that many of these maps contain highly localized boundary information.

Boundary Detection Results Before discussing how boundary information is integrated

in our energy for semantic segmentation, here we present experimental results assessing
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Method ODS OIS AP

SCG [39] 0.739 0.758 0.773

SE [15] 0.746 0.767 0.803

MCG [38] 0.747 0.779 0.759

N4-fields [12] 0.753 0.769 0.784

DeepEdge [1] 0.753 0.772 0.807

DeepContour [11] 0.756 0.773 0.797

HfL [2] 0.767 0.788 0.795

HED [66] 0.782 0.804 0.833

BNF 0.788 0.807 0.851

Table 11: Boundary detection results on BSDS500 benchmark. Our proposed method
outperforms all prior algorithms according to all three evaluation metrics.

the accuracy of our boundary detection scheme. We tested our boundary detector on the

BSDS500 dataset [50], which is the standard benchmark for boundary detection. The qual-

ity of the predicted boundaries is evaluated using three standard measures: fixed contour

threshold (ODS), per-image best threshold (OIS), and average precision (AP).

In Table 11 we show that our algorithm outperforms all prior methods according to both F-

score measures and the Average Precision metric. In Fig. 18, we also visualize our predicted

boundaries. The second column shows the pixel-level softmax output computed from the

linear combination of feature maps, while the third column depicts our final boundaries

after applying a non-maximum suppression post-processing step.

We note that our predicted boundaries achieve high-confidence predictions around objects.

This is important as we employ these boundaries to improve semantic segmentation results,

as discussed in the next subsection.

Constructing Pairwise Pixel Affinities.

We can use the predicted boundaries to build pairwise pixel affinities. Intuitively, we declare

two pixels as similar (i.e., likely to belong to the same segment) if there is no boundary

crossing the straight path between these two pixels. Conversely, two pixels are dissimilar

if there is a boundary crossing their connecting path. The larger the boundary magnitude
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Figure 18: A figure illustrating our boundary detection results. In the second column, we
visualize the raw probability output of our boundary detector. In the third column, we
present the final boundary maps after non-maximum suppression. While most prior meth-
ods predict the boundaries where the sharpest change in color occurs, our method captures
semantic object-level boundaries, which we subsequently use to aid semantic segmentation.
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of the crossed path, the more dissimilar the two pixels should be, since a strong boundary

is likely to mark the separation of two distinct segments. Similarly to [30], we encode this

intuition with a following formulation:

wsbij = exp (
−Mij

σsb
) (3.1)

where Mij denotes the maximum boundary value that crosses the straight line path between

pixels i and j, σsb depicts the smoothing parameter and wsbij denotes the semantic boundary-

based affinity between pixels i and j.

Similarly, we want to exploit high-level object information in the network to define another

type of pixel similarity. Specifically, we use object class probabilities from the softmax (SM)

layer to achieve this goal. Intuitively, if pixels i and j have different hard segmentation labels

from the softmax layer, we set their similarity ( wsmij ) to 0. Otherwise, we compute their

similarity using the following equation:

wsmij = exp (
−Dij

σsm
) (3.2)

where Dij denotes the difference in softmax output values corresponding to the most likely

object class for pixels i and j, and σsm is a smoothing parameter. Then we can write the

final affinity measure as:

wij = exp (wsmij )wsbij (3.3)

We exponentiate the term corresponding to the object-level affinity because our boundary-

based affinity may be too aggressive in declaring two pixels as dissimilar. To address this

issue, we increase the importance of the object-level affinity in (3.3) using the exponential

function. However, in the experimental results section, we demonstrate that most of the

53



benefit from modeling pairwise potentials comes from wsbij rather than wsmij .

We then use this pairwise pixel affinity measure to build a global affinity matrix W that

encodes relationships between pixels in the entire image. For a given pixel, we sample

≈ 10% of points in the neighborhood of radius 20 around that pixel, and store the resulting

affinities into W .

3.3.3. Global Inference

The last step in our proposed method is to combine semantic boundary information with the

coarse segmentation from the FCN softmax layer to produce an improved segmentation. We

do this by introducing a global energy function that utilizes the affinity matrix constructed

in the previous section along with the segmentation from the FCN softmax layer. Using this

energy, we perform a global inference to get segmentations that are well localized around

the object boundaries and that are also spatially smooth.

Typical globalization models such as MRFs [76], CRFs [28] or Graph Cuts [77] produce a

discrete label assignment for the segmentation problem by jointly modeling a multi-label

distribution and solving a non-convex optimization. The common problem in doing so is

that the optimization procedure may get stuck in local optima.

We introduce a new global energy function, which overcomes this issue and achieves better

segmentation in comparison to prior globalization models. Similarly to prior globalization

approaches, our goal is to minimize the energy corresponding to the sum of unary and

pairwise potentials. However, the key difference in our approach comes from the relaxation

of some of the constraints. Specifically, instead of modeling our problem as a joint multi-

label distribution, we propose to decompose it into multiple binary problems, which can be

solved concurrently. This decomposition can be viewed as assigning pixels to foreground

and background labels for each of the different object classes. Additionally, we relax the

integrality constraint. Both of these relaxations make our problem more manageable and

allow us to formulate a global energy function that is differentiable, and has a closed form
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Input Images FCN Softmax Dense-CRF BNF Boundaries BNF Segmentation

Figure 19: A figure illustrating semantic segmentation results. Images in columns two
and three represent FCNsoftmax and Dense-CRF predictions, respectively. Note that all
methods use the same FCN unary potentials. Additionally, observe that unlike FCN and
Dense-CRF, our methods predicts segmentation that are both well localized around object
boundaries and that are also spatially smooth.

solution.

In [78], the authors introduce the idea of learning with global and local consistency in the

context of semi-supervised problems. Inspired by this work, we incorporate some of these

ideas in the context of semantic segmentation. Before defining our proposed global energy

function, we introduce some relevant notation.

For the purpose of illustration, suppose that we only have two classes: foreground and

background. Then we can denote an optimal continuous solution to such a segmentation

problem with variable z∗. To denote similarity between pixels i and j we use wij . Then, di

indicates the degree of a pixel i. In graph theory, the degree of a node denotes the number

of edges incident to that node. Thus, we set the degree of a pixel to di =
∑n

j=1wij for all

j except i 6= j. Finally, with fi we denote an initial segmentation probability, which in our

case is obtained from the FCN softmax layer.

Using this notation, we can then formulate our global inference objective as:

z∗ = argmin
z

µ

2

∑

i

di(zi −
fi
di

)2 +
1

2

∑

ij

wij(zi − zj)2 (3.4)
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This energy consists of two different terms. Similar to the general globalization framework,

our first term encodes the unary energy while the second term includes the pairwise energy.

We now explain the intuition behind each of these terms. The unary term attempts to find

a segmentation assignment (zi) that deviates little from the initial candidate segmentation

computed from the softmax layer (denoted by fi). The zi in the unary term is weighted by

the degree di of the pixel in order to produce larger unary costs for pixels that have many

similar pixels within the neighborhood. Instead, the pairwise term ensures that pixels that

are similar should be assigned similar z values. To balance the energies of the two terms

we introduce a parameter µ and set it to 0.025 throughout all our experiments.

We can also express the same global energy function in matrix notation:

z∗ = argmin
z

µ

2
D(z−D−1f)T(z−D−1f) +

1

2
zT(D−W)z (3.5)

where z∗ is a n× 1 vector containing an optimal continuous assignment for all n pixels, D

is a diagonal degree matrix, and W is the n× n pixel affinity matrix. Finally, f denotes a

n×1 vector containing the probabilities from the softmax layer corresponding to a particular

object class.

An advantage of our energy is that it is differentiable. If we denote the above energy as

E(z) then the derivative of this energy can be written as follows:

∂E(z)

∂z
= µD(z−D−1f) + (D−W)z = 0 (3.6)

With simple algebraic manipulations we can then obtain a closed form solution to this

optimization:

z∗ = (D− αW)−1βf (3.7)
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where α = 1
1+µ and β = µ

1+µ . In the general case where we have k object classes we can

write the solution as:

Z∗ = (D− αW)−1βF (3.8)

where Z now depicts a n × k matrix containing assignments for all k object classes, while

F denotes n× k matrix with object class probabilities from softmax layer. Due to the large

size of D− αW it is impractical to invert it. However, if we consider an image as a graph

where each pixel denotes a vertex in the graph, we can observe that the term D −W in

our optimization is equivalent to a Laplacian matrix of such graph. Since we know that a

Laplacian matrix is positive semi-definite, we can use the preconditioned conjugate gradient

method [79] to solve the system in Eq. (3.9). Alternatively, because our defined global

energy in Eq. (3.5) is differentiable, we can efficiently solve this optimization problem using

stochastic gradient descent. We choose the former option and solve the following system:

(D− αW)z∗ = βf (3.9)

To obtain the final discrete segmentation, for each pixel we assign the object class that

corresponds to the largest column value in the row of Z (note that each row in Z represents

a single pixel in the image, and each column in Z represents one of the object classes).

In the experimental section, we show that this solution produces better quantitative and

qualitative results in comparison to commonly used globalization techniques.

3.4. Experimental Results

In this section we present quantitative and qualitative results for semantic segmentation on

the SBD [14] dataset, which contains objects and their per-pixel annotations for 20 Pascal

VOC classes. We evaluate semantic segmentation results using two evaluation metrics. The
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first metric measures accuracy based on pixel intersection-over-union averaged per pixels

(PP-IOU) across the 20 classes. According to this metric, the accuracy is computed on a

per-pixel basis. As a result, the images that contain large object regions are given more

importance. However, for certain applications we may need to accurately segment small

objects. Therefore, similar to [2] we also consider the PI-IOU metric (pixel intersection-

over-union averaged per image across the 20 classes), which gives equal weight to each of

the images.

We compare Boundary Neural Fields with other commonly used global inference methods.

These methods include Belief Propagation [76], Iterated Conditional Mode (ICM), Graph

Cuts [77], and Dense-CRF [28]. Note that in all of our evaluations we use the same FCN

unary potentials for every model.

Our evaluations provide evidence for three conclusions:

• In Subsection 3.4.1, we show that our boundary-based pixel affinities are better suited

for semantic segmentation than the traditional color-based affinities.

• In Subsection 3.4.2, we demonstrate that our global minimization leads to better

results than those achieved by other inference schemes.

• In Fig. 19, we qualitatively compare the outputs of FCN and Dense-CRF to our

predicted segmentations. This comparison shows that the BNF segments are better

localized around the object boundaries and that they are also spatially smooth.

3.4.1. Comparing Affinity Functions for Semantic Segmentation

In Table 12, we consider two global models. Both models use the same unary potentials

obtained from the FCN softmax layer. However, the first model uses the popular color-

based pairwise affinities, while the second employs our boundary-based affinities. Each of

these two models is optimized using several inference strategies. The table shows that using

our boundary based-affinity function improves the results of all global inference methods
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Metric Inference Method RGB Affinity BNF Affinity

PP-IOU

Belief Propagation [76] 75.4 75.6
ICM 74.2 75.8

TRWS [80] 75.9 76.7
QPBO [81] 76.9 77.2

BNF 74.6 77.6

PI-IOU

Belief Propagation [76] 45.9 46.2
ICM 45.7 48.8

TRWS [80] 51.5 52.0
QPBO [81] 55.3 57.2

BNF 53.0 58.5

Table 12: We compare semantic segmentation results when using a color-based pixel affinity
and our proposed boundary-based affinity. We note that our proposed affinity improves the
performance of all globalization techniques. Note that all of the inference methods use
the same FCN unary potentials. This suggests that for every method our semantic
boundary based affinity is more beneficial for semantic segmentation than the color-based
affinities.

according to both evaluation metrics. Note that we cannot include Dense-CRF [28] in this

comparison because it employs an efficient message-passing technique and integrating our

affinities into this technique is a non-trivial task. However, we compare our method with

Dense-CRF in Subsection 3.4.2.

The results in Table 12 suggest that our semantic boundary based pixel affinity function

yields better semantic segmentation results compared to the commonly-used color based

affinities. We note that we also compared the results of our inference technique using other

edge detectors, notably UCM [30] and HfL [2]. In comparison to UCM edges, we observed

that our boundaries provide 1.0% and 6.0% according to both evaluation metrics respec-

tively. When comparing our boundaries with HfL method, we observed similar segmentation

performance, which suggests that our method works best with the high quality semantic

boundaries.

3.4.2. Comparing Inference Methods for Semantic Segmentation

Additionally, we also present semantic segmentation results for both of the metrics (PP-

IOU and PI-IOU) in Table 13. In this comparison, all the techniques use the same FCN

unary potentials. Additionally, all inference methods except Dense-CRF use our affinity

measure (since the previous analysis suggested that our affinities yield better performance).
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Metric Method aero bike bird boat bottle bus car cat chair cow mean

PP-IOU

FCN-Softmax 80.7 71.6 80.7 71.3 72.9 88.1 81.8 86.6 47.4 82.9 74.8
Belief Propagation [76] 81.4 72.2 82.4 72.2 74.3 88.8 82.4 87.2 48.4 83.8 75.6

ICM 81.7 72.2 82.8 72.1 75.3 89.6 83.4 87.7 46.3 83.3 75.8
TRWS [80] 81.6 70.9 83.8 72.0 75.1 89.5 82.5 88.0 51.7 86.6 76.7

Graph Cuts [77] 82.5 72.4 84.6 73.3 77.2 89.7 83.3 88.8 49.3 84.0 76.9
QPBO [81] 82.6 72.3 84.7 73.1 76.7 89.9 83.6 89.3 49.7 85.0 77.2

Dense-CRF [28] 83.4 71.5 84.9 72.6 76.2 89.5 83.3 89.1 50.4 86.7 77.3
BNF-SB 81.9 72.5 84.9 73.3 76.0 90.3 83.1 89.2 51.2 86.7 77.4

BNF-SB-SM 82.2 73.1 85.1 73.8 76.7 90.6 83.4 89.5 51.3 86.7 77.6

PI-IOU

FCN-Softmax 56.9 35.1 47.8 41.1 27.4 51.1 43.4 52.7 22.2 43.1 41.8
Belief Propagation [76] 68.0 38.6 52.9 45.8 31.9 55.9 47.2 58.2 24.6 49.9 46.2

ICM 65.3 40.9 56.4 45.3 33.7 58.9 49.5 61.9 25.8 53.5 48.8
TRWS [80] 67.5 40.7 60.3 46.3 35.6 63.4 49.6 69.3 29.7 58.9 52.0

Graph Cuts [77] 72.1 47.8 64.5 50.8 36.0 70.8 51.4 71.6 31.7 65.8 55.3
QPBO [81] 71.6 46.8 65.6 49.6 38.0 72.6 52.7 76.7 32.5 69.6 57.2

Dense-CRF [28] 68.0 39.5 58.0 45.0 33.4 62.8 47.7 66.0 29.4 60.9 51.1
BNF-SB 71.6 48.1 67.2 52.3 37.8 79.5 52.9 80.8 33.3 71.5 58.5

BNF-SB-SM 72.0 48.9 66.5 52.9 39.1 79.0 53.4 78.6 32.9 72.2 58.5

Metric Method table dog horse mbike person plant sheep sofa train tv mean

PP-IOU

FCN-Softmax 57.9 83.9 79.6 80.4 81.0 64.7 78.2 54.5 80.9 69.9 74.8
Belief Propagation [76] 58.4 84.6 80.5 80.9 81.5 65.1 79.5 55.5 81.5 71.2 75.6

ICM 58.4 84.6 80.6 81.4 81.5 65.8 79.5 56.0 80.7 74.1 75.8
TRWS [80] 61.9 85.8 83.3 80.8 81.1 65.3 81.5 58.8 77.6 75.9 76.7

Graph Cuts [77] 60.3 85.4 82.2 81.2 81.9 66.7 79.8 58.0 82.3 74.9 76.9
QPBO [81] 61.1 86.2 82.9 81.3 82.3 67.1 80.5 58.8 82.2 75.1 77.2

Dense-CRF [28] 61.0 86.8 83.5 81.8 82.3 66.9 82.2 58.2 81.9 75.1 77.3
BNF-SB 61.5 86.6 83.2 81.3 81.9 66.2 81.7 58.6 81.6 75.8 77.4

BNF-SB-SM 61.4 86.8 83.3 81.7 82.3 67.7 81.9 58.4 82.4 75.4 77.6

PI-IOU

FCN-Softmax 29.2 54.2 40.5 45.6 59.1 24.2 43.6 24.8 55.9 37.2 41.8
Belief Propagation [76] 31.7 60.2 44.9 50.1 62.4 25.2 49.9 27.6 62.3 42.2 46.2

ICM 33.2 62.1 48.0 53.2 63.4 24.1 54.8 34.0 63.7 47.7 48.8
TRWS [80] 37.8 67.4 57.3 53.8 64.1 26.3 62.0 36.9 63.1 49.9 52.0

Graph Cuts [77] 34.4 71.8 62.0 59.4 64.8 29.0 60.9 38.7 70.3 51.6 55.3
QPBO [81] 38.9 74.4 61.4 61.0 66.2 30.3 68.7 41.4 72.2 52.8 57.2

Dense-CRF [28] 36.0 68.5 54.6 51.4 63.7 28.3 57.6 37.1 65.9 48.2 51.1
BNF-SB 39.5 75.1 65.7 63.4 65.1 31.1 67.5 39.6 73.2 54.7 58.5

BNF-SB-SM 39.4 74.6 65.9 64.2 65.8 31.7 66.9 39.0 73.1 53.9 58.5

Table 13: Semantic segmentation results on the SBD dataset according to PP-IOU (per
pixel) and PI-IOU (per image) evaluation metrics. We use BNF-SB to denote the variant of
our method that uses only semantic boundary based affinities. Additionally, we use BNF-
SB-SM to indicate our method that uses boundary and softmax based affinities. We observe
that our proposed globalization method outperforms other globalization techniques accord-
ing to both metrics by at least 0.3% and 1.3% respectively. Note that in this experiment,
all of the inference methods use the same FCN unary potentials. Additionally, for each
method except Dense-CRF (it is challenging to incorporate boundary based affinities into
the Dense-CRF framework) we use our boundary based affinities, since those lead to better
results.
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We use BNF-SB to denote the variant of our method that uses only semantic boundary

based affinities. Additionally, we use BNF-SB-SM to indicate the version of our method

that uses both boundary and softmax -based affinities (see Eq. (3.3)).

Based on these results, we observe that our proposed technique outperforms all the other

globalization methods according to both metrics, by 0.3% and 1.3% respectively. Addi-

tionally, these results indicate that most benefit comes from the semantic boundary affinity

term rather than the softmax affinity term.

In Fig. 19, we also present qualitative semantic segmentation results. Note that, compared

to the segmentation output from the softmax layer, our segmentation is much better local-

ized around the object boundaries. Additionally, in comparison to Dense-CRF predictions,

our method produces segmentations that are much spatially smoother.

3.4.3. Semantic Boundary Classification

We can also label our boundaries with a specific object class, using the same classification

strategy as in the HfL system [2]. Since the SBD dataset provides annotations for semantic

boundary classification, we can test our results against the state-of-the-art HfL [2] method

for this task. Due to the space limitation, we do not include full results for each cate-

gory. However, we observe that our produced results achieve mean Max F-Score of 54.5%

(averaged across all 20 classes) whereas HfL method obtains 51.7%.

3.5. Conclusions

In this work we introduced a Boundary Neural Field (BNF), an architecture that employs

a semantic segmentation FCN to predict semantic boundaries and then uses the predicted

boundaries and the FCN output to produce an improved semantic segmentation maps a

global optimization. We showed that our predicted boundaries are better suited for seman-

tic segmentation than the commonly used low-level color based affinities. Additionally, we

introduced a global energy function that decomposes semantic segmentation into multiple
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binary problems and relaxes an integrality constraint. We demonstrated that the mini-

mization of this global energy allows us to predict segmentations that are better localized

around the object boundaries and that are spatially smoother compared to the segmenta-

tions achieved by prior methods. We made the code of our globalization technique available

at http://www.seas.upenn.edu/~gberta/publications.html.

The main goal of this work was to show the effectiveness of boundary-based affinities for

semantic segmentation. However, due to differentiability of our global energy, it may be

possible to add more parameters inside the BNFs and learn them in a front-to-end fashion.

We believe that optimizing the entire architecture jointly could capture the inherent rela-

tionship between semantic segmentation and boundary detection even better and further

improve the performance of BNFs. We will investigate this possibility in our future work.
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CHAPTER 4 : Convolutional Random Walk Networks for Semantic Image

Segmentation

4.1. Introduction

Fully convolutional networks (FCNs) were first introduced in [27] where they were shown

to yield significant improvements in semantic image segmentation. Adopting the FCN

approach, many subsequent methods have achieved even better performance [29, 72, 73, 74,

75, 29, 72, 73, 82, 83]. However, traditional FCN-based methods tend to suffer from several

limitations. Large receptive fields in the convolutional layers and the presence of pooling

layers lead to low spatial resolution in the deepest FCN layers. As a result, their predicted

segments tend to be blobby and lack fine object boundary details. We report in Fig. 27 some

examples illustrating typical poor localization of objects in the outputs of FCNs. Recently,

Chen at al. [29] addressed this issue by applying a Dense-CRF post-processing step [28] on

top of coarse FCN segmentations. However, such approaches often fail to accurately capture

semantic relationships between objects and lead to spatially fragmented segmentations (see

an example in the last column of Fig. 27).

To address these problems several recent methods integrated CRFs or MRFs directly into

the FCN framework [72, 82, 75, 84]. However, these new models typically involve (1) a

large number of parameters, (2) complex loss functions requiring specialized model training

Input Image DeepLab DeepLab-CRF

Figure 20: Examples illustrating shortcomings of prior semantic segmentation methods.
Segments produced by FCNs are poorly localized around object boundaries, while Dense-
CRF produce spatially-disjoint object segments.
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[29] [84] [83] [72] [82] RWN

requires post-processing? 3 7 7 7 7 7

uses complex loss? 7 7 7 3 3 7

requires recurrent layers? 7 3 7 3 7 7

model size (in MB) 79 79 961 514 1000 79

Table 14: Summary of recent semantic segmentation models. For each model, we report
whether it requires: (1) CRF post-processing, (2) complex loss functions, or (3) recurrent
layers. We also list the size of the model (using the size of Caffe [16] models in MB). We
note that unlike prior methods, our RWN does not need post-processing, it is implemented
using standard layers and loss functions, and it also has a compact model.

or (3) recurrent layers, which make training and testing more complicated. We summarize

the most prominent of these approaches and their model complexities in Table 14.

We note that we do not claim that using complex loss functions always makes the model

overly complex and too difficult to use. If a complex loss is integrated into an FCN frame-

work such that the FCN can still be trained in a standard fashion, and produce better

results than using standard losses, then such a model is beneficial. However, in the context

of prior segmentation methods [72, 82, 75, 84], such complex losses often require: 1) modi-

fying the network structure (casting CNN into an RNN) [72, 84], or 2) using a complicated

multi-stage learning scheme, where different layers are optimized during a different training

stage [82, 75]. Due to such complex training procedures, which are adapted for specific

tasks and datasets, these models can be quite difficult to adapt for new tasks and datasets,

which is disadvantageous.

Inspired by random walk methods [85, 86, 87], in this work we introduce a simple, yet

effective alternative to traditional FCNs: a Convolutional Random Walk Network (RWN)

that combines the strengths of FCNs and random walk methods. Our model addresses the

issues of (1) poor localization around the boundaries suffered by FCNs and (2) spatially

disjoint segments produced by dense CRFs. Additionally, unlike recent semantic segmen-

tation approaches [83, 72, 82, 75], our RWN does so without significantly increasing the

complexity of the model.

Our proposed RWN jointly optimizes (1) pixelwise affinity and (2) semantic segmentation
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Figure 21: The architecture of our proposed Random Walk Network (RWN) (best viewed
in color). Our RWN consists of two branches: (1) one branch devoted to the segmen-
tation predictions , and (2) another branch predicting pixel-level affinities. These two
branches are then merged via a novel random walk layer that encourages spatially smooth
segmentation predictions. The entire RWN is jointly optimized end-to-end via a standard
back-propagation algorithm.

learning objectives that are linked via a novel random walk layer, which enforces spatial

consistency in the deepest layers of the network. The random walk layer is implemented via

matrix multiplication. As a result, RWN seamlessly integrates both affinity and segmen-

tation branches, and can be jointly trained end-to-end via standard back-propagation with

minimal modifications to the existing FCN framework. Additionally, our implementation of

RWN requires only 131 additional parameters. Thus, the effective complexity of our model

is the same as the complexity of traditional FCNs (see Table 14). We compare our approach

to several variants of the DeepLab semantic segmentation system [29, 88], and show that

our proposed RWN consistently produces better performance over these baselines for the

tasks of semantic segmentation and scene labeling.

4.2. Related Work

The recent introduction of fully convolutional networks (FCNs) [27] has led to remarkable

advances in semantic segmentation. However, due to the large receptive fields and many

pooling layers, segments predicted by FCNs tend to be blobby and lack fine object bound-

ary details. Recently there have been several attempts to address these problems. These
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approaches can be divided into several groups.

The work in [3, 29, 89, 90, 3] used FCN predictions as unary potentials in a separate global-

ization model that refines the segments using similarity cues based on regions or boundaries.

One disadvantage of these methods is that the learning of the unary potentials and the train-

ing of the globalization model are completely disjoint. As a result, these methods often fail

to capture semantic relationships between objects, which produces segmentation results

that are spatially disjoint (see the right side of Fig. 27).

To address these issues, several recent methods [72, 82, 75] have proposed to integrate a

CRF or a MRF into the network, thus enabling end-to-end training of the joint model.

However, the merging of these two models leads to a dramatic increase in complexity and

number of parameters. For instance, the method in [72], requires to cast the original FCN

into a Recurrent Neural Network (RNN), which renders the model much bigger in size (see

Table 14). A recent method [84] jointly predicts boundaries and segmentations, and then

combines them using a recurrent layer, which also requires complex modifications to the

existing FCN framework.

The work in [82] proposes to use local convolutional layers, which leads to a significantly

larger number of parameters. Similarly, the method in [75] proposes to model unary and

pairwise potentials by separate multi-scale branches. This leads to a network with at least

twice as many parameters as the traditional FCN and a much more complex multi-stage

training procedure.

In addition to the above methods, it is worth mentioning deconvolutional networks [83, 74],

which use deconvolution and unpooling layers to recover fine object details from the coarse

FCN predictions. However, in order to effectively recover fine details one must employ

nearly as many deconvolutional layers as the number of convolutional layers, which yields

a large growth in number of parameters (see Table 14).

Unlike these prior methods, our implementation of RWN needs only 131 additional param-
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eters over the base FCN. These additional parameters represent only 0.0008% of the total

number of parameters in the network. In addition, our RWN uses standard convolution and

matrix multiplication. Thus, it does not need to incorporate complicated loss functions or

new complex layers [72, 84, 82, 75]. Finally, unlike the methods in [3, 29, 89, 90] that predict

and refine the segmentations disjointly, our RWN model jointly optimizes pixel affinity and

semantic segmentation in an end-to-end fashion. Our experiments show that this leads to

spatially smoother segmentations.

4.3. Background

Random Graph Walks. Random walks are one of the most widely known and used

methods in graph theory [85]. Most notably, the concept of random walks led to the

development of PageRank [87] and Personalized PageRank [86], which are widely used for

many applications. Let G = (V,E) denote an undirected graph with a set of vertices V and

a set of edges E. Then a random walk in such graph can be characterized by the transition

probabilities between its vertices. Let W be a symmetric n × n affinity matrix, where n

denotes the number of nodes in the graph and where Wij ∈ [0, 1] denotes how similar the

nodes i and j are. In the context of a semantic segmentation problem, each pixel in the

image can be viewed as a separate node in the graph, where the similarity between two

nodes can be evaluated according to some metric (e.g. color or texture similarity etc).

Then let D indicate a diagonal n× n matrix, which stores the degree values for each node:

Dii =
∑n

j=1Wij for all j except i = j. Then, we can express our random walk transition

matrix as A = D−1W .

Given this setup, we want to model how the information in the graph spreads if we start at a

particular node, and perform a random walk in this graph. Let yt be a n×1 vector denoting

a node distribution at time t. In the context of the PageRank algorithm, yt may indicate the

rank estimates associated with each of the n Web pages at time t. Then, according to the

random walk theory, we can spread the rank information in the graph by performing a one-

step random walk. This process can be expressed as yt+1 = Ayt, where yt+1 denotes a newly
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obtained rank distribution after one random walk step, the matrix A contains the random

walk transition probabilities, and yt is the rank distribution at time step t. Thus, we can

observe that the information among the nodes can be diffused, by simply multiplying the

random walk transition probability matrix A, with the rank distribution yt at a particular

time t. This process can be repeated multiple times, until convergence is reached. For a

more detailed survey please see [85, 87].

Difference from MRF/CRF Approaches. CRFs and MRFs have been widely used in

structured prediction problems [91]. Recently, CRFs and MRFs have also been integrated

into the fully convolutional network framework for semantic segmentation [72, 82, 75]. We

want to stress that while the goals of CRF/MRF and random walk methods are the same

(i.e. to globally propagate information in the graph structures), the mechanism to achieve

this objective is very different in these two approaches. While MRFs and CRFs typically

employ graphs with a fixed grid structure (e.g., one where each node is connected to its four

closest neighbors), random walk methods are much more flexible and can implement any

arbitrary graph structure via the affinity matrix specification. Thus, since our proposed

RWN is based on random walks, it can employ any arbitrary graph structure, which can be

beneficial as different problems may require different graph structures.

Additionally, to globally propagate information among the nodes, MRFs and CRFs need to

employ approximate inference techniques, because exact inference tends to be intractable

in graphs with a grid structure. Integrating such approximate inference techniques into the

steps of FCN training and prediction can be challenging and may require lots of domain-

specific modifications. In comparison, random walk methods globally propagate information

among the nodes via a simple matrix multiplication. Not only is the matrix multiplication

efficient and exact, but it is also easy to integrate into the traditional FCN framework for

both training and prediction schemes. Additionally, due to the use of standard convolution

and matrix multiplication operations, our RWN can be trivially trained via standard back-

propagation in an end-to-end fashion.
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4.4. Convolutional Random Walk Networks

In this work, our goal is to integrate a random walk process into the FCN architecture to en-

courage coherent semantic segmentation among pixels that are similar to each other. Such

a process introduces an explicit grouping mechanism, which should be beneficial in address-

ing the issues of (1) poor localization around the boundaries, and (2) spatially fragmented

segmentations.

A schematic illustration of our proposed RWN architecture is presented in Fig. 21. Our

RWN is a network composed of two branches: (1) one branch that predicts semantic seg-

mentation potentials, and (2) another branch devoted to predicting pixel-level affinities.

These two branches are merged via a novel random walk layer that encourages spatially

coherent semantic segmentation. The entire RWN can be jointly optimized end-to-end. We

now describe each of the components of the RWN architecture in more detail.

4.4.1. Semantic Segmentation Branch

For the semantic segmentation branch, we present results for several variants of the DeepLab

segmentation systems, including DeepLab-LargeFOV [29], DeepLab-attention [88], and

DeepLab-v2, which is one of the top performing segmentation systems. DeepLab-largeFOV

is a fully convolutional adaptation of the VGG [60] architecture, which contains 16 con-

volutional layers. DeepLab-attention [88], is a multi-scale VGG based network, for which

each multi-scale branch focuses on a specific part of the image. Finally, DeepLab-v2 is a

multi-scale network based on the residual network [92] implementation. We note that even

though we use a DeepLab architecture in our experiments, other architectures such as [?]

and many others could be integrated into our framework.

4.4.2. Pixel-Level Affinity Branch

To learn the pairwise pixel-level affinities, we employ a separate affinity learning branch

with its own learning objective (See Fig. 21). The affinity branch is connected with the
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input n × n × 3 RGB image, and low-level conv1 1 and conv1 2 layers. The feature maps

corresponding to these layers are n×n in width and height but they have a different number

of channels (3, 64, and 64 respectively). Let k be the total number of affinity learning

parameters (in our case k = 3 + 64 + 64 = 131). Then, let F be a sparse n2 × n2 × k

matrix that stores L1 distances between each pixel and all of its neighbors within a radius

R, according to each channel. Note that the distances are not summed up across the

k channels, but instead they are computed and stored separately for each channel. The

resulting matrix F is then used as an input to the affinity branch, as shown in Figure 21.

The affinity branch consists of a 1×1×k convolutional layer and an exponential layer. The

output of the exponential layer is then attached to the Euclidean loss layer and is optimized

to predict the ground truth pixel affinities, which are obtained from the original semantic

segmentation annotations. Specifically, we set the ground truth affinity between two pixels

to 1 if the pixels share the same semantic label and have distance less than R from each

other. Note that F , which is used as an input to the affinity branch, is a sparse matrix, as

only a small fraction of all the entries in F are populated with non-zero values. The rest of

the entries are ignored during the computation.

Also note that we only use features from RGB, conv1 1 and conv1 2 layers, because they

are not affected by pooling, and thus, preserve the original spatial resolution. We also

experimented with using features from deeper FCN layers such as fc6, and fc7. However,

we observed that features from deeper layers are highly correlated to the predicted semantic

segmentation unary potentials, which causes redundancy and little improvement in the

segmentation performance. We also experimented with using more than one convolutional

layer in the affinity learning branch, but observed that additional layers provide negligible

improvements in accuracy.
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4.4.3. Random Walk Layer

To integrate the semantic segmentation potentials and our learned pixel-level affinities, we

introduce a novel random walk layer, which propagates the semantic segmentation infor-

mation based on the learned affinities. The random walk layer is connected to the two

bottom layers: (1) the fc8 layer containing the semantic segmentation potentials, and (2)

the affinity layer that outputs a sparse n2×n2 random walk transition matrix A. Then, let

f denote the activation values from the fc8 layer, reshaped to the dimensions of n2 ×m,

where n2 refers to the number of pixels, and m is the number of object classes in the dataset.

A single random walk layer implements one step of the random walk process, which can

be performed as ŷ = Af , where ŷ indicates the diffused segmentation predictions, and A

denotes the random walk transition matrix.

The random walk layer is then attached to the softmax loss layer, and is optimized to predict

ground truth semantic segmentations. One of the advantages of our proposed random walk

layer is that it is implemented as a matrix multiplication, which makes it possible to back-

propagate the gradients to both (1) the affinity branch and (2) the segmentation branch.

Let the softmax-loss gradient be an n2 ×m matrix ∂L
∂ŷ , where n2 is the number of pixels in

the fc8 layer, and m is the number of predicted object classes. Then the gradients, which

are back-propagated to the semantic segmentation branch are computed as ∂L
∂f = AT ∂L∂ŷ ,

where AT is the transposed random walk transition matrix. Also, the gradients, that are

back-propagated to the affinity branch are computed as ∂L
∂A = ∂L

∂ŷ f
T , where fT is a m× n2

matrix that contains transposed activation values from the fc8 layer of the segmentation

branch. We note that ∂L
∂A is a sparse n2 × n2 matrix, which means that the above matrix

multiplication only considers the pixel pairs that correspond to the non-zero entries in the

random walk transition matrix A.
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Method aero bike bird boat bottle bus car cat chair cow mean overall

DeepLab-largeFOV 79.8 71.5 78.9 70.9 72.1 87.9 81.2 85.7 46.9 80.9 73.8 76.0
RWN-largeFOV 81.6 72.1 82.3 72.0 75.4 89.1 82.5 87.4 49.1 83.6 75.8 77.9

DeepLab-attention 83.4 76.0 83.0 74.2 77.6 91.6 85.2 89.1 54.4 86.1 79.0 80.5
RWN-attention 84.7 76.6 85.5 74.0 79.0 92.4 85.6 90.0 55.6 87.4 79.9 81.5

DeepLab-v2 85.5 50.6 86.9 74.4 82.7 93.1 88.4 91.9 62.1 89.7 81.4 83.4
RWN-v2 86.0 50.0 88.4 73.5 83.9 93.4 88.6 92.5 63.9 90.9 82.1 84.3

Method table dog horse mbike person plant sheep sofa train tv mean overall

DeepLab-largeFOV 56.5 82.6 77.9 79.3 80.1 64.4 77.6 52.7 80.3 70.0 73.8 76.0
RWN-largeFOV 57.9 84.8 80.7 80.2 81.2 65.7 79.7 55.5 81.5 74.0 75.8 77.9

DeepLab-attention 62.9 86.7 83.8 84.2 82.4 70.2 84.7 61.0 84.8 77.9 79.0 80.5
RWN-attention 63.5 88.2 85.0 84.8 83.4 70.1 85.9 62.6 85.1 79.3 79.9 81.5

DeepLab-v2 71.5 90.3 86.2 86.3 84.6 75.1 87.6 72.2 87.8 81.3 81.4 83.4
RWN-v2 72.6 90.9 87.3 86.9 85.7 75.0 89.0 74.0 88.1 82.3 82.1 84.3

Table 15: Semantic segmentation results on the SBD dataset according to the per-pixel
Intersection over Union evaluation metric. From the results, we observe that our proposed
RWN consistently outperforms DeepLab-LargeFOV, DeepLab-attention, and DeepLab-v2
baselines.

4.4.4. Random Walk Prediction at Testing

In the previous subsection, we mentioned that the prediction in the random walk layer can

be done via a simple matrix multiplication operation ŷ = Af , where A denotes the random

walk transition matrix, and f depicts the activation values from the fc8 layer. Typically,

we want to apply multiple random walk steps until convergence is reached. However, we

also do not want to deviate too much from our initial segmentation predictions, in case the

random walk transition matrix is not perfectly accurate, which is a reasonable expectation.

Thus, our prediction scheme needs to balance two effects: (1) propagating the segmentation

information across the nodes using a random walk transition matrix, and (2) not deviating

too much from the initial segmentation.

This tradeoff between the two quantities is very similar to the idea behind MRF and CRF

models, which try to minimize an energy formed by unary and pairwise terms. However, as

discussed earlier, MRF and CRF methods tend to use 1) grid structure graphs and 2) var-

ious approximate inference techniques to propagate segmentation information globally. In

comparison, our random walk approach is advantageous because it can use 1) any arbitrary

graph structure and 2) an exact matrix multiplication operation to achieve the same goal.
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Input Image DeepLab_v2 RWN_v2

Figure 22: A figure illustrating the segmentation results of our RWN and the DeepLab-v2
network. Note that RWN produced segmentations are spatially smoother and produce less
false positive predictions than the DeepLab-v2 system.

Let us first denote our segmentation prediction after t+ 1 random walk steps as ŷt+1. Then

our general prediction scheme can be written as:

ŷt+1 = αAŷt + (1− α)f (4.1)

where α denotes a parameter [0, 1] that controls the tradeoff between (1) diffusing segmen-

tation information along the connections of a random walk transition matrix and (2) not

deviating too much from initial segmentation values (i.e. the outputs of the last layer of the

FCN). Let us now initialize ŷ0 to contain the output values from the fc8 layer, which we

denoted with f . Then we can write our prediction equation by substituting the recurrent

expressions:
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ŷt+1 = (αA)t+1f + (1− α)
t∑

i=0

(αA)if (4.2)

Now, because we want to apply our random walk procedure until convergence we set

t = ∞. Then, because our random walk transition matrix is stochastic we know that

limt→∞(αA)t+1 = 0. Furthermore, we can write St =
∑t

i=0A
i = I + A + A2 + . . . + At,

where I is an identity matrix, and where St denotes a partial sum of random walk transitions

until iteration t. We can then write St −ASt = I −At+1, which implies:

(I −A)St = I −At+1 (4.3)

From our previous derivation, we already know that limt→∞(A)t+1 = 0, which implies that

S∞ = (I −A)−1 (4.4)

Thus, our final prediction equation, which corresponds to applying repeated random walk

steps until convergence, can be written as

ŷ∞ = (I − αA)−1f (4.5)

In practice, the random walk transition matrix A is pretty large, and inverting it is im-

practical. To deal with this problem, we shrink the matrix (I − αA) using a simple and

efficient technique presented in [38], and then invert it to compute the final segmentation.

In the experimental section, we show that such a prediction scheme produces solid results

and is still pretty efficient (≈ 1 second per image). We also note that we use this prediction

scheme only during testing. During training we employ a scheme that uses a single random

walk step (but with a much larger radius), which is faster. We explain this procedure in
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Input Image DeepLab_v2-CRF RWN_v2

Figure 23: Comparison of segmentation results produced by our RWN versus the DeepLab-
v2-CRF system. It can be noticed that, despite not using any post-processing steps, our
RWN predicts fine object details (e.g., bike wheels or plane wings) more accurately than
DeepLab-v2-CRF, which fails to capture some these object parts.

the next subsection.

4.4.5. Implementation Details

We jointly train our RWN in an end-to-end fashion for 2000 iterations, with a learning

rate of 10−5, 0.9 momentum, the weight decay of 5 · 10−5, and 15 samples per batch.

For the RWN model, we set the tradeoff parameter α to 0.01. During testing we set

the random walk connectivity radius R = 5 and apply the random walk procedure until

convergence. However, during training we set R = 40, and apply a single random walk

step. This training strategy works well because increasing the radius size eliminates the

need for multiple random walk steps, which speeds up the training. However, using R = 5

and applying an infinite number of random walk steps until convergence still yields slightly

better results (see study in 2.5.3), so we use it during testing. For all of our experiments,

we use a Caffe library [16]. During training, we also employ data augmentation techniques

such as cropping, and mirroring.
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Method mean IOU overall IOU
DeepLab-largeFOV-CRF 75.7 77.7

RWN-largeFOV 75.8 77.9
DeepLab-attention-CRF 79.9 81.6

RWN-attention 79.9 81.5
DeepLab-v2-CRF 81.9 84.2

RWN-v2 82.1 84.3
DeepLab-DT 76.6 78.7

RWN 76.7 78.8

Table 16: Quantitative comparison between our RWN model and several variants of the
DeepLab system that use a dense CRF or a domain-transfer (DT) filter for post-processing.
These results suggest that our RWN acts as an effective globalization scheme, since it
produces results that are similar or even better than the results achieved by post-processing
the DeepLab outputs with a CRF or DT.

4.5. Experimental Results

In this section, we present our results for semantic segmentation on the SBD [14] dataset,

which contains objects and their per-pixel labels for 20 Pascal VOC classes (excluding the

background class). We also include scene labeling results on the commonly used Stanford

background [93] and Sift Flow [94] datasets. We evaluate our segmentation results on these

tasks using the standard metric of the intersection-over-union (IOU) averaged per pixels

across all the classes from each dataset. We also include the class-agnostic overall pixel

intersection-over-union score, which measures the per-pixel IOU across all classes.

We experiment with several variants of the DeepLab system [29, 88] as our main base-

lines throughout our experiments: DeepLab-LargeFOV [29], DeepLab-attention [88], and

DeepLab-v2.

Our evaluations provide evidence for four conclusions:

• In subsections 4.5.1, 4.5.2, we demonstrate that our proposed RWN outperforms

DeepLab baselines for both semantic segmentation, and scene labeling tasks.

• In subsection 4.5.1, we demonstrate that, compared to the dense CRF approaches,

RWN predicts segmentations that are spatially smoother.
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Figure 24: Localization error around the object boundaries within a trimap. Compared
to the DeepLab system (blue), our RWN (red) achieves lower segmentation error around
object boundaries for all trimap widths.

• In Subsection 4.5.3, we show that our approach is more efficient than the denseCRF

inference.

• Finally, in Subsection, 2.5.3, we demonstrate that our random walk layer is beneficial

and that our model is flexible to use different graph structures.

4.5.1. Semantic Segmentation Task

Standard Evaluation. In Table 15, we present semantic segmentation results on the

Pascal SBD dataset [14], which contains 8055 training and 2857 testing images. These

results indicate that RWN consistently outperforms all three of the DeepLab baselines.

In Figure 22, we also compare qualitative segmentation results of a DeepLab-v2 network

and our RWN model. We note that the RWN segmentations contain fewer false positive

predictions and are also spatially smoother across the object regions.

Furthermore, in Table 16, we present experiments where we compare RWN with models

using dense CRFs [28] to post-process the predictions of DeepLab systems. We also include
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DeepLab-DT [84], which uses domain-transfer filtering to refine the segmentations inside

an FCN. Based on these results, we observe that, despite not using any post-processing,

our RWN produces results similar to or even better than the DeepLab models employing

post-processing. These results indicate that RWN can be used as a globalization mechanism

to ensure spatial coherence in semantic segmentation predictions. In Figure 23 we present

qualitative results where we compare the final segmentation predictions of RWN and the

DeepLab-v2-CRF system. Based on these qualitative results, we observe that RWN captures

more accurately the fine details of the objects, such as the bike wheels, or plane wings. The

DeepLab-v2-CRF system misses some of these object parts.

Localization Around the Boundaries. Earlier we claimed that due to the use of large

receptive fields and many pooling layers, FCNs tend to produce blobby segmentations that

lack fine object boundary details. We want to show that our RWN produces more accu-

rate segmentations around object boundaries the traditional FCNs. Thus, adopting the

practice from [28], we evaluate segmentation accuracy around object boundaries. We do

so by counting the relative number of misclassified pixels within a narrow band (“trimap”)

surrounding the ground truth object boundaries. We present these results in Figure 24.

The results show that RWN achieves higher segmentation accuracy than the DeepLab (DL)

system for all trimap widths considered in this test.

Spatial Smoothness. We also argued that applying the dense CRF [28] as a post-

processing technique often leads to spatially fragmented segmentations (see the right side

of Fig. 27). How can we evaluate whether a given method produces spatially smooth or

spatially fragmented segmentations? Intuitively, spatially fragmented segmentations will

produce many false boundaries that do not correspond to actual object boundaries. Thus,

to test the spatial smoothness of a given segmentation, we extract the boundaries from the

segmentation and then compare these boundaries against ground truth object boundaries

using the standard maximum F-score (MF) and average precision (AP) metrics, as done in

the popular BSDS benchmark [50]. We perform this experiment on the Pascal SBD dataset
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Method MF AP
DeepLab-largeFOV-CRF 0.676 0.457

RWN-largeFOV 0.703 0.494
DeepLab-attention-CRF 0.722 0.521

RWN-attention 0.747 0.556
DeepLab-v2-CRF 0.763 0.584

RWN-v2 0.773 0.595

Table 17: Quantitative comparison of spatial segmentation smoothness. We extract the
boundaries from the predicted segmentations and evaluate them against ground truth ob-
ject boundaries using max F-score (MF) and average precision (AP) metrics. These results
suggest that RWN segmentations are spatially smoother than the DeepLab-CRF segmen-
tations across all baselines.

and present these results in Table 17. We can see that the boundaries extracted from the

RWN segmentations yield better MF and AP results compared to the boundaries extracted

from the different variants of the DeepLab-CRF system. Thus, these results suggest that

RWN produces spatially smoother segmentations than DeepLab-CRF.

4.5.2. Scene Labeling

We also tested our RWN on the task of scene labeling using two popular datasets: Stanford

Background [93] and Sift Flow [94]. Stanford Background is a relatively small dataset for

scene labeling. It contains 715 images, which we randomly split into 600 training images

and 115 testing images. In contrast, the Sift Flow dataset contains 2489 training examples

and 201 testing images. For all of our experiments, we use the DeepLab-largeFOV [29]

architecture since it is smaller and more efficient to train and test. To evaluate scene

labeling results, we use the overall IOU evaluation metric which is a commonly used metric

for this task. In Table 18, we present our scene labeling results on both of these datasets.

Our results indicate that our RWN method outperforms the DeepLab baseline by 2.57%,

and 2.54% on these two datasets, respectively.

4.5.3. Runtime Comparisons

We also include the runtime comparison of our RWN approach versus the denseCRF infer-

ence. We note that using a single core of a 2.7GHz Intel Core i7 processor, the denseCRF
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Figure 25: A figure illustrating how the probability predictions change as we apply more
random walk steps. Note that the RWN predictions become more refined and better local-
ized around the object boundaries as more random walk steps are applied.

inference requires 3.301 seconds per image on average on a Pascal SBD dataset. In compar-

ison, a single iteration of a random walk, which is simply a sparse matrix multiplication,

takes 0.032 seconds on average on the same Pascal SBD dataset. A DeepLab v2 post-

processed with denseCRF achieves 81.9% IOU score on this same Pascal SBD dataset. In

comparison, RWN v2 with a single random walk iteration and with R=40 (radius) achieves

82.2% IOU, which is both more accurate and more than 100 times more efficient than the

denseCRF inference.

4.5.4. Ablation Experiments

Optimal Number of Random Walk Steps. In Figure 26, we illustrate how the IOU

accuracy changes when we use a different number of random walk steps. We observe that

the segmentation accuracy keeps increasing as we apply more random walk steps, and that

it reaches its peak performance when the random walk process converges, which indicates

the effectiveness of our random walk step procedure. In Figure 25, we also illustrate how the

predicted object segmentation probabilities change as we apply more random walk steps.
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Figure 26: IOU accuracy as a function of the number of random walk steps. From this plot
we observe that the segmentation accuracy keeps improving as we apply more random walk
steps and that it reaches its peak when the random walk process converges.

We observe that the object boundaries become much better localized as more iterations of

random walk are applied.

Radius Size. To analyze the effect of a radius size in the RWN architecture, we test

alternative versions of our model with different radii sizes. Our results indicate, that the

RWN model produces similar results with different radii in the interval of R > 3 and R < 20

if the random walk step process is applied until convergence. We also note that, if we select

R = 40, and apply a random walk step only once, we can achieve the segmentation accuracy

of 75.5% and 77.6% according to the two evaluation metrics, respectively. In comparison,

choosing R = 5 and applying random walk until convergence yields the accuracies of 75.8%

and 77.9%, which is slightly better. However, note that selecting R = 40, and applying

multiple random walk steps does not yield any improvement in segmentation accuracy.

These experiments show the flexibility of our model compared to the MRF or CRF models,

which typically use graphs with a fixed grid structure. Our model has the ability to use

different graph structures depending on the problem.
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DeepLab-largeFOV RWN-largeFOV
Stanford-BG 65.74 68.31

Sift-Flow 67.31 69.85

Table 18: Scene labeling results on the Stanford Background and Sift-Flow datasets mea-
sured according to the overall IOU evaluation metric. We use a DeepLab-largeFOV network
as base model, and show that our RWN yields better results on both of these scene labeling
datasets.

4.6. Conclusion

In this work, we introduced Random Walk Networks (RWNs), and showed that, compared

to traditional fully convolutional networks (FCNs), they produce improved accuracy for

the same model complexity. Our RWN addresses the issues of 1) poor localization around

the segmentation boundaries and 2) spatially disjoint segmentations. Additionally, our

implementation of RWN uses only 131 additional learnable parameters (0.0008% of the

original number of the parameters in the network) and it can be easily integrated into the

standard FCN learning framework for a joint end-to-end training. Finally, RWN provides

a more efficient alternative to the denseCRF approaches.

Our future work includes experimenting with alternative RWN architectures and applying

RWN to new domains such as language processing or speech recognition.
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CHAPTER 5 : Object Detection in Video with Spatiotemporal Sampling Networks

5.1. Introduction

In recent years, deep convolutional networks have achieved remarkable results in many

computer vision tasks [26, 95, 60, 1, 96, 97, 36, 4], including object detection in images [98,

99, 100, 101, 102, 46, 103, 104, 105, 106, 107]. However, directly applying these image-level

models to object detection in video is difficult due to motion blur, video defocus, unusual

poses, or object occlusions (see Figure 27). Despite these challenges, it is natural to assume

that video object detectors should be more powerful than still image detectors because video

contains richer information about the same object instance (e.g., its appearance in different

poses, and from different viewpoints). The key challenge then is designing a model that

effectively exploits temporal information in videos.

Prior work [108, 109, 20, 110] has proposed to exploit such temporal information in videos by

means of various post-processing steps aimed at making object detections coherent across

time. However, since temporal coherence is enforced in a second stage, typically these

methods cannot be trained end-to-end. To overcome this limitation, recent work [18] has

introduced a flow-based aggregation network that is trainable end-to-end. It exploits optical

flow to find correspondences across time and it then aggregates features across temporal

correspondences to smooth object detections over adjacent frames. However, one of the

downsides of this new model is that in addition to performing object detection, it also

needs to predict motion. This is disadvantageous due to the following reasons: 1) designing

an effective flow network architecture is not trivial, 2) training such a model requires large

amounts of flow data, which may be difficult and costly to obtain, 3) integrating a flow

network and a detection network into a single model may be challenging due to factors such

as different loss functions, differing training procedures for each network, etc.

To address these shortcomings, in this work, we introduce a simple, yet effective Spatiotem-

poral Sampling Network (STSN) that uses deformable convolutions [111] across space and
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Figure 27: An illustration of the common challenges associated with object detection in
video. These include video defocus, motion blur, occlusions and unusual poses. The bound-
ing boxes denote the objects that we want to detect in these examples.

time to leverage temporal information for object detection in video. Our STSN learns to

spatially sample useful feature points from nearby video frames such that object detection

accuracy in a given video frame is maximized. To achieve this, we train our STSN end-to-

end on a large set of video frames labeled with bounding boxes. We show that this leads

to a better accuracy compared to the state-of-the-art on the ImageNet VID dataset [17],

without requiring complex flow network design, or the need to train the network on large

amounts of flow data.

5.2. Related Work

Object Detection in Images. Modern object detectors [98, 99, 100, 101, 102, 46, 103,

104, 105, 106, 107] are predominantly built on some form of deep CNNs [26, 60, 96]. One of

the earliest deep CNN object detection systems was R-CNN [46], which involved a two-stage

pipeline where object proposals were extracted in the first stage, and then each proposal was

classified using a CNN. To reduce the computational burden, the methods in [98], and [102]

leveraged ROI pooling, which led to more efficient learning. Furthermore, to unify the en-

tire object detection pipeline, Faster R-CNN [101] replaced various region proposal methods

by another network to make the entire system trainable end-to-end. Following this work,

several methods [106, 107] extended Faster R-CNN into a system that runs in real time with
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small reduction in performance. Additionally, recent work [105] introduced position sensi-

tive ROI pooling, which significantly improved the detection efficiency compared to prior

object detection systems. Finally, two recent methods, Mask R-CNN [99], and Deformable

CNNs [111], improved object detection results even further and they represent the current

state-of-the-art in object detection. Whereas Mask-RCNNs use an additional branch that

predicts a mask for each region of interest, Deformable CNNs employ deformable convolu-

tions, which allow the network to condition discriminatively its receptive field on the input,

and to also model deformations of objects more robustly.

While the aforementioned methods work well on images, they are not designed to exploit

temporal relationships in video. Instead, our Spatiotemporal Sampling Network (STSN),

is specifically designed for a video object detection task. Unlike standard Deformable

CNNs [111], which use deformable convolution in the spatial domain, our STSN learns

to sample features temporally across different video frames, which leads to improved video

object detection accuracy.

Object Detection in Videos. Up until the introduction of the ImageNet VID chal-

lenge [17], there were no large-scale benchmarks for video object detection. Thus, there are

only few methods that we can compare our work to. T-CNNs [108, 109] use a video object

detection pipeline that involves predicting optical flow first, then propagating image-level

predictions according to the flow, and finally using a tracking algorithm to select tem-

porally consistent high confidence detections. Seq-NMS [20] constructs a temporal graph

from overlapping bounding box detections across the adjacent frames, and then uses dy-

namic programming to select bounding box sequences with the highest overall detection

score. The work of Lee et al. [110] treats a video object detection task as a multi-object

tracking problem. Finally, the method of Feichtenhofer et al. [19] proposes a ConvNet ar-

chitecture that solves detection and tracking problems jointly, and then applies a Viterbi

algorithm based optimization to link the detections across time.

The approach most similar to our work is the method of Zhu et al. [18], who proposed an
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end-to-end trainable network that jointly estimates optical flow and also detects objects

in video. This is accomplished by using the predicted optical flow to align the features

from the adjacent frames. The aggregated features are then fed as input to the detection

network.

Our method is beneficial over the methods that use optical flow CNNs such as the method

of Zhu et al. [18]. First, we note that pretrained optical flow CNNs do not always generalize

to new datasets, which may hinder video object detection performance. In contrast, our

method has a learnable spatiotemporal sampling module that is discriminatively trained

from object detection labels, and thus, it does not suffer from this issue. Furthermore, our

STSN can be trained for video object detection in a single stage end-to-end. In comparison,

methods that rely on optical flow require an additional stage to train an optical flow CNN,

which renders the training procedure more cumbersome and lengthy. Finally, as we will

show in the experimental section, our STSN also yields a gain —albeit moderate— in video

object detection accuracy.

5.3. Background: Deformable Convolution

Before describing our method, we first review some background information on deformable

convolution [111], which is one of the key components of our STSN. Let us first note that a

standard 2D convolution is comprised of two steps: 1) sampling locations on a uniformly-

spaced grid R, and 2) performing a weighted summation of sampled values using weights w.

For example, if we consider a standard 2D convolution with a 3 × 3 kernel, and a dilation

factor of 1, the grid R is defined as R = {(−1,−1), (−1, 0), . . . , (0, 1), (1, 1)}. Under a

standard 2D convolution, to compute a new value at pixel location p0 in the output feature

map y, we would perform the following operation on the input feature map x:

y(p0) =
∑

pn∈R
w(pn) · x(p0 + pn), (5.1)
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Instead, in a deformable 2D convolution, the grid R is augmented with data-conditioned

offsets {∆pn|n = 1, . . . , N}, where N = |R|. We can then compute a deformable convolution

as:

y(p0) =
∑

pn∈R
w(pn) · x(p0 + pn + ∆pn) (5.2)

Since the offset ∆pn is typically fractional, the operation above is implemented using bilinear

interpolation. Note that the offsets are obtained by applying a separate convolutional layer

to the activation tensor containing the feature map x. This yields an offset map that has

the same spatial resolution as the input feature map. Also, note that the offsets are shared

across all feature channels of a given activation tensor. During training, the weights for

the deformable convolution kernel, and the offsets kernel are learned jointly by propagating

gradients through the bilinear interpolation operator. We refer the reader to the original

work that introduced deformable convolutions [111] for further details.

5.4. Spatiotemporal Sampling Network

Our goal is to design a network architecture that incorporates temporal information for

object detection in video.

Let us denote with It the frame at time t in the video. Let us consider one of the scenarios

depicted in Figure 27, e.g., a setting where It is blurry, contains an object in an unusual

pose, or perhaps an occlusion. But let us assume that a nearby frame It+k includes the same

object clearly visible and in a relatively standard pose. If we only had access to It, accurate

object detection would be very challenging. However, leveraging information from It+k

may enable more robust detection in the frame It . Thus, the main challenge in this setting

is incorporating object-level information from the supporting frame It+k for an improved

object detection accuracy in the reference frame It. Note that in our system each frame in
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Figure 28: Our spatiotemporal sampling mechanism, which we use for video object de-
tection. Given the task of detecting objects in a particular video frame (i.e., a reference
frame), our goal is to incorporate information from a nearby frame of the same video (i.e.,
a supporting frame). First, we extract features from both frames via a backbone convolu-
tional network (CNN). Next, we concatenate the features from the reference and supporting
frames, and feed them through multiple deformable convolutional layers. The last of such
layers produces offsets that are used to sample informative features from the supporting
frame. Our spatiotemporal sampling scheme allows us to produce accurate detections even
if objects in the reference frame appear blurry or occluded.

the video is treated in turn as a reference frame in order to produce object detection in every

frame of the video. Furthermore, in practice we use 2K supporting frames for detection

in the reference frame, by taking the K preceding frames and the K subsequent frames

as supporting frames, i.e. {It−K , It−(K−1), . . . , It−1, It+1, . . . , It+(K−1), It+K}. However, for

ease of explanation we introduce our STSN by considering a single supporting frame It+k.

To effectively integrate temporal information we need two things: 1) powerful object-level

features from an image-level network, and 2) an ability to sample useful object-level features

from the supporting frames for the reference frame. We achieve the former by employing

a state-of-the-art backbone network. For the latter, we design a spatiotemporal sampling

scheme, which we describe below.

Our STSN can be summarized in four steps. First, a backbone convolutional network
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computes object-level features for each video frame individually. Then, spatiotemporal

sampling blocks are applied to the object-level feature maps in order to sample relevant

features from nearby frames conditioned on the input reference frame. Next, the sampled

features from each video frame are temporally aggregated into a single feature tensor for

the reference frame using a per-pixel weighted summation. Finally, the feature tensor is

provided as input to the detection network to produce final object detection results for the

given reference frame. We note that our framework integrates these conceptually-distinct

four steps into a single architecture, which we train end-to-end.

Backbone Architecture. Our backbone network is applied to each frame of the video. As

backbone network, we use a Deformable CNN [111] based on the ResNet-101 [96] architec-

ture, which is one of the top-performing object detection systems at the moment. Similarly

to [111], our backbone network employs 6 deformable convolutional layers. We also note

that even though we use a Deformable CNN architecture, our system can easily integrate

other architectures and thus it can benefit from future improvements in still-image object

detection.

Spatiotemporal Feature Sampling. Our main contribution is the design of a spa-

tiotemporal sampling mechanism, which seamlessly integrates temporal information in a

given video. As a first step, we feed the reference frame It and the supporting frame It+k

through our image-level backbone network, which produces feature tensors ft and ft+k,

respectively. Note that ft, ft+k ∈ Rc×h×w where c, h, and w are the number of channels,

the height, and the width of the activation tensor. The feature tensors ft, and ft+k are

then concatenated into a new feature tensor ft,t+k ∈ R2c×h×w. Note that this tensor ft,t+k

now has twice as many channels as our initial tensors, and that it now contains object-level

information from both the reference and the supporting frame.

Next, we use the tensor ft,t+k to predict (x, y) location offsets, which are then used to sample

the supporting tensor ft+k. The sampling mechanism is implemented using a deformable

convolutional layer, which takes 1) the predicted offsets, and 2) the supporting tensor
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ft+k as its inputs, and then outputs a newly sampled feature tensor gt,t+k, which can

be used for object detection in the reference frame. We use subscript t, t+ k to denote

the resampled tensor because, although g is obtained by resampling the supporting tensor,

the offset computation uses both the reference as well as the supporting frame. A detailed

illustration of our spatiotemporal sampling scheme is presented in Figure 28.

In practice, our spatiotemporal sampling block has 4 deformable convolution layers (only

2 are shown in Figure 28). This means that the initially predicted offsets o
(1)
t,t+k and the

concatenated temporal features ft,t+k are first used as inputs to a deformable convolution

layer that outputs a new feature map g
(1)
t,t+k. Next, we use g

(1)
t,t+k to predict offsets o

(2)
t,t+k,

and a new feature map g
(2)
t,t+k. This continues for 2 more layers until we obtain offsets

o
(4)
t,t+k, which are then used to sample the points out of the supporting feature map ft+k.

The final sampled feature map g
(4)
t,t+k is obtained via another deformable convolutional layer

that takes as inputs offsets o
(4)
t,t+k and the original supporting feature map ft+k.

Our proposed spatiotemporal sampling mechanism learns, which object-level features in the

supporting frame are useful for object detection in the reference frame. Conceptually, it

replaces the optical flow used in [18] to establish temporal correspondences with a learnable

module that is discriminatively trained from object detection labels. In our experimental

section, we show that such a sampling scheme allows us to improve video object detection

performance over the still-image baseline and the flow-based method of Zhu et al. [18]

without training our model on optical flow data.

Feature Aggregation. The spatiotemporal sampling procedure is applied for all the

supporting frames in the selected range. Note, that this includes a special case, when the

reference frame is treated as a supporting frame to itself to produce g
(4)
t,t , which is a feature

tensor computed from only the reference frame.

The resulting feature tensors have the following form: g
(4)
t,t+k ∈ Rc(4)×h×w. These feature

tensors are aggregated into an output feature tensor gaggt ∈ Rc(4)×h×w for the reference
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frame. This tensor captures information from the reference frame, its K preceding frames

and its K subsequent frames. The output tensor value gaggt (p) for frame t at pixel p is

computed as a weighted summation:

gaggt (p) =
K∑

k=−K
wt,t+k(p) g

(4)
t,t+k(p) (5.3)

Inspired by strong results presented in [18], we use their proposed feature aggregation

method where the weights w indicate the importance of each supporting frame to the

reference frame. To compute the weights w, we attach a 3-layer subnetwork S(x) to the

features g
(4)
t,t+k and then compute their intermediate feature representations S(g

(4)
t,t+k). We

then obtain the weights w by applying an exponential function on the cosine similarity

between each corresponding feature point in a reference frame and a supporting frame:

wt,t+k(p) = exp


 S(g

(4)
t,t )(p) · S(g

(4)
t,t+k)(p)

|S(g
(4)
t,t )(p)||S(g

(4)
t,t+k)(p)|


 (5.4)

Finally, all weights w are fed into the softmax layer, to ensure that the weights sum up to

1 at each pixel location p (i.e.,
∑K

k=−K wt,t+k(p) = 1 ∀p).

Object Detection. Finally, the aggregated feature tensor gaggt is used as input to the

detection network, which outputs the final bounding box predictions and their object class

probabilities. We describe more details related to the detection network in the next section

along with other implementation details.
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5.4.1. Implementation Details

For our experiments we use the MXNet [112] library. Below we provide details related to

our STSN architecture, and our training and inference procedures.

Architecture. For our backbone network we adopt a state-of-the-art Deformable CNN [111]

based on the ResNet-101 [96] architecture. Our spatiotemporal sampling block consists of

four 3× 3 deformable convolutional layers each with 1024 output channels. In addition, it

also has four 3×3 convolutional layers predicting (x, y) offsets. To implement a subnetwork

S(x) that predicts feature aggregation weights, we use a sequence of 1× 1, 3× 3 and 1× 1

convolutional layers with 512, 512 and 2048 output channels respectively. Our detection

network is implemented based on the deformable R-FCN design [105, 113, 111]. When

feeding the aggregated feature gaggt to the detection network, we split its 1024 channels

into two parts, and feed the first and the last 512 channels to the RPN and R-FCN sub-

networks respectively. For the RPN, we use 9 anchors and 300 proposals for each image.

Furthermore, for the R-FCN, we use deformable position-sensitive ROI pooling with 7× 7

groups.

Training. Our entire STSN model is fully differentiable, and thus, trainable end-to-end.

During training, we resize all input images to a shorter side of 600 pixels, and use T =

3 frames to train our model (i.e., K = 1). More specifically, we randomly sample one

supporting frame before and one supporting frame after the reference frame. We observed

that using more supporting frames in training does not lead to a higher accuracy.

For the rest of our training procedure, we follow the protocol outlined in [18]. Specifically,

we train our model in two stages. First, we pre-train our full model on the Imagenet

DET dataset using the annotations of the 30 object classes that overlap with the Imagenet

VID dataset. Note that Imagenet DET dataset contains only images, and thus, we cannot

sample meaningful supporting frames in this case. Therefore, in the case of images, we

use the reference frames as our supporting frames. Afterwards, the entire model is trained
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for 120K iterations on 4 Tesla K40 GPUs with each GPU holding a single mini-batch.

The learning rate is set to 0.001 and 0.0001 for the first 80K and the last 40K iterations

respectively. Afterwards, we finetune the entire model on the Imagenet VID dataset for

60K iterations with a learning rate of 0.001 and 0.0001 for the first 40K and the last 20K

iterations respectively. Note that in the second stage of training we sample the supporting

frames randomly within a certain neighborhood of a reference frame (as described above).

Inference. During inference, we use T = 27, meaning that we consider K = 13 supporting

frames before and after the reference frame. To avoid GPU memory issues, we first extract

features from the backbone network for each image individually, and then cache these

features in the memory. Afterwards, we feed all these features into our spatiotemporal

sampling block. At the end, standard NMS with a threshold of 0.3 is applied to refine the

detections. To handle the first and the last K = 13 frames in the video —two boundary

cases that require sampling the neighboring frames beyond the video start and end, we pad

the start of a video with K copies of the first frame, and the end of a video with K copies

of the last frame.

5.5. Experimental Results

In this section, we evaluate our approach for video object detection on the ImageNet

VID [17] dataset, which has 3, 862 and 555 training and testing video clips respectively.

Each video is annotated with bounding boxes. The frames from each video are extracted at

25−30 fps. The dataset contains 30 object categories that are a subset of the 200 categories

in the ImageNet DET dataset.

Quantitative Results. To assess the effectiveness of our method we compare it to several

relevant baselines, mainly two state-of-the-art methods FGFA [18] and D&T [19]. First, to

verify that using temporal information from video is beneficial, we include a static image-

level variant of our model (SSN) that uses only the reference frame to make its predictions.

Furthermore, we also want to show that our proposed spatiotemporal sampling scheme
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Methods
D&T SSN FGFA STSN D&T+ STSN+

No FlowNet? 3 - 7 3 3 3

Not Using Flow Data? 3 - 7 3 3 3

No Temporal Post-Processing? 3 - 3 3 7 7

mAP@0.5 75.8 76.0 78.8 78.9 79.8 80.4

Table 19: We use the ImageNet VID [17] dataset to compare our STSN to the state-of-the-
art FGFA [18] and D&T [19] methods. Note that SSN refers to our static baseline, which
is obtained by using only the reference frame for output generation (no temporal info).
Also note, that D&T+ and STSN+ refer to D&T and STSN baselines with temporal post-
processing applied on top of the CNN outputs. Based on these results, we first point out
that unlike FGFA, our STSN does not rely on the external optical flow data, and still yields
higher mAP (78.9 vs 78.8). Furthermore, when no temporal post-processing is used, our
STSN produces superior performance in comparison to the D&T baseline (78.9 vs 75.8).
Finally, we demonstrate that if we use a simple Seq-NMS [20] temporal post-processing
scheme on top of our STSN predictions, we can further improve our results and outperform
all the other baselines.

works as effectively as the optical flow network in [18], but without requiring optical flow

supervision. To do so, we replace the optical flow network from [18], with our spatiotem-

poral sampling mechanism. The rest of the architecture and the training details are kept

the same for both baselines. Such an experimental design allows us to directly compare

the effectiveness of our spatiotemporal sampling scheme and the optical flow network of

FGFA [18].

Finally, we demonstrate that our method performs better than the D&T [19] method in two

scenarios: 1) when we only use CNN-level outputs for video object detection, and also 2)

when we allow temporal post-processing techniques such as Seq-NMS to be applied on top

of the CNN outputs. We note that in Table 19, D&T [19] and STSN refer to the CNN-level

baselines whereas D&T+ [19] and STSN+ denote these same methods but with temporal

post-processing (i.e. Seq-NMS [20], object-tube based linking [19], etc) applied on top of

the CNN outputs.

We present our results in Table 19, where we assess each method according to several criteria.

In the first row of Table 19, we list whether a given method requires integrating a separate

flow network into its training / prediction pipeline. Ideally, we would want to eliminate

94



0 2 6 10 14 18 22 26 30

Number of Supporting Frames

76

76.5

77

77.5

78

78.5

79

m
A

P

-10 -8 -6 -4 -2 0 2 4 6 8 10

Time Delta w.r.t Reference Frame

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

W
e

ig
h
t 
M

a
g
n
itu

d
e

Figure 29: A figure illustrating some of our ablation experiments. Left: we plot mAP
as a function of the number of supporting frames used by our STSN. From this plot, we
notice that the video object detection accuracy improves as we use more supporting frames.
Right: To understand the contribution of each of the supporting frames, we plot the
average weight magnitudes wt,t+k(p) for different values of k. Here, p represents a point at
the center of an object. From this plot, we observe that the largest weights are associated
with the supporting frames that are near the reference frame. However, note that even
supporting frames that are further away from the reference frame (e.g. k = 9) contribute
quite substantially to the final object detection predictions.

this step because optical flow prediction requires designing a highly complex flow network

architecture. We also list whether a given method requires pre-training on the external

optical flow data, which we would want to avoid since it makes the whole training pipeline

more costly. Additionally, we list, whether a given method uses any external temporal

post-processing steps, which we would want to eliminate because they typically make the

training / prediction pipeline disjoint and more complex. Finally, we assess each method

according to the standard mean average precision (mAP) metric at intersection over union

(IoU) threshold of 0.5.

Based on our results in Table 19, we make the following three conclusions. First, we

note that our STSN produces better quantitative results than the state-of-the-art FGFA

method (78.9 vs 78.8). We acknowledge that our accuracy improvement over FGFA is

moderate. However, we point out that our STSN operates in a much more challenging

setting than FGFA. Unlike FGFA, our STSN does not use any optical flow supervision.
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Instead, it is trained directly for video object detection. The fact that STSN learns temporal

correspondences without direct optical flow supervision, and still outperforms FGFA is quite

impressive. Such results also show the benefit of discriminative end-to-end training with

respect to the final video object detection task objective.

Second, our results indicate that in a setting when no temporal post-processing (i.e. Seq-

NMS [20], object-tube based linking [19], etc) is used, our STSN outperforms the D&T

baseline by a substantial margin (78.9 vs 75.8). These results indicate, that our STSN

is able to learn powerful spatiotemporal features, and produce solid video object detection

results even without using explicit temporal post-processing algorithms that link bounding

box detections over time.

Lastly, we show that if we integrate a simple Seq-NMS [20] temporal post-processing scheme

into our STSN, we can further improve our results and outperform the D&T+ baseline,

which uses a similar Viterbi based temporal post-processing scheme [19] (80.4 vs 79.8).

In general, we would like to note that our STSN aims to produce powerful spatiotemporal

features, whereas the method of D&T [19] is targeted more for smoothing the final bounding

box predictions across time. Thus, due to these characteristics we believe that these two

methods are complementary, and it would be possible to integrate them together for even

better results.

Optimal Number of Supporting Frames. In the left subplot of Figure 29, we also

illustrate how the number of supporting frames affects the video object detection accuracy.

We notice that the performance keeps increasing as we add more supporting frames, and

then plateaus at T = 27.

Increasing the Temporal Stride. We also investigate how the temporal stride k, at which

we sample the supporting frames, affects STSN’s performance. We report that temporal

strides of k = 2 and k = 4, yield mAP scores of 79.0 and 77.9, respectively. Thus, k = 2

yields a slight improvement over our original 78.9 mAP score. However, increasing k to
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Reference Frame (t) Supporting Frame (t+9) Reference Frame (t) Supporting Frame (t+9)

Figure 30: An illustration of our spatiotemporal sampling scheme (zoom-in for a better
view). The green square indicates a point in the reference frame, for which we want to
compute a new convolutional output. The red square indicates the corresponding point
predicted by our STSN in a supporting frame. The yellow arrow illustrates the estimated
object motion. Although our model is trained discriminatively for object detection and not
for tracking or motion estimation, our STSN learns to sample from the supporting frame
at locations that coincide almost perfectly with the same object. This allows our method
to perform accurate object detection even if objects in the reference frame are blurry or
occluded.

larger values reduces the accuracy.

Feature Aggregation Weight Analysis. To analyze how much each of the supporting

frame contributes to the final object detections, we visualize the average weight magnitudes

wt,t+k(p) for different values of k. This visualization is presented in the right subplot of

Figure 29. We note that in this case, the weight magnitudes correspond to the point p,

which is located at the center of an object. From this plot, we can conclude that the

largest contribution comes from the supporting frames that are near the reference frame

(k = −1, 0, 1). However, note that even even supporting frames that are further away

from the reference frame (e.g. k = −9, 9), have non-zero weights, and contribute quite

substantially to the final object detection predictions.

Qualitative Results. To get a better understanding how our STSN exploits temporal

information from a given video, we visualize in Figure 30, the average offsets predicted by

the STSN sampling block. These offsets are used by the STSN to decide, which object-

level information from the supporting frame should be used to detect an object in the
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Figure 31: An illustration of using our spatiotemporal sampling scheme in action. The
green square indicates a fixed object location in the reference frame. The red square de-
picts a location in a supporting frame, from which relevant features are sampled. Even
without optical flow supervision, our STSN learns to track these objects in video. In our
supplementary material, we include more of such examples in the video format.

reference frame. The green square in the reference frame depicts a pixel, for which we

want to compute a convolution output. The red square in the supporting frame represents

an average offset, which is used to determine which feature points from the supporting

frame should be sampled. The yellow arrow indicates object’s motion between the reference

frame and the supporting frame. Note that despite a relatively large motion between the

reference and the supporting frames, our STSN samples features from the supporting frame

right around the center of the object, which is exactly what we want. Such spatiotemporal

sampling allows us to detect objects even if they appear blurry or occluded in the reference

frame.

In addition, based on the results in Figure 30, we observe that even without an explicit

optical flow supervision, our STSN learns to accurately capture the motion of the objects,
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which is another appealing property of our model. In fact, in Figure 31, we illustrate

several examples of using our STSN to track objects in a given video. From Figure 31,

we observe that despite a relatively large motion in each sequence, our STSN accurately

samples features around objects in every supporting frame. Such results indicate that we

may be able to use our sampling mechanism for discriminative object tracking. In fact,

we note that the commonly used dense optical flow methods are often redundant because

most applications do not require flow prediction for every single pixel. In comparison, we

point out that our STSN captures a more discriminative form of motion, which is learned to

exclusively benefit a video object detection task. In our supplementary material, we include

more of such results in the video form.

In addition to visualizing our spatiotemporal sampling results, in Figure 32, we also illustrate

object detections of the static SSN baseline, and those of our full STSN model (zoom-in

to see the probabilities and class predictions of each baseline). In all of these cases, we

observe that incorporating temporal information helps STSN to correct the mistakes made

by the static baseline. For instance, in the third row of Figure 32, a static SSN baseline

incorrectly labels an object in the reference frame as a bird, which probably happens due

to the occluded head of the lizard. However, STSN is able to fix this mistake by looking at

the supporting frames, and by sampling around the lizard body and its head (See Row 3,

Column 1 in Figure 32). Furthermore, in the last row, a static SSN baseline fails to detect

one of the bicycles because it is occluded in the reference frame. Once again STSN fixes

this error, by sampling around the missed bicycle in the supporting frame where the bicycle

is more clearly visible. Similar behavior also occurs in other cases where STSN successfully

resolves occlusion and blurriness issues.

5.6. Conclusion

In this work, we introduced the Spatiotemporal Sampling Network (STSN) which is a new

architecture for object detection in video. Compared to the state-of-the-art FGFA [18]

method, our model involves a simpler design, it does not require optical flow computation
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and it produces higher video object detection accuracy. Our model is fully differentiable,

and unlike prior video object detection methods, it does not necessitate optical flow training

data. This renders our model easy to train end-to-end. Our future work will include

experimenting with more complex design of spatiotemporal sampling blocks.
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SSN (Static) STSN (Ours)Sampled Points in the  
   Supporting Frame

Figure 32: A figure illustrating object detection examples where our spatiotemporal sam-
pling mechanism helps STSN to correct the mistakes made by a static SSN baseline (please
zoom-in to see the class predictions and their probabilities). These mistakes typically occur
due to occlusions, blurriness, etc. STSN fixes these errors by using relevant object level in-
formation from supporting frames. In Column 1 we illustrate the points in the supporting
frame that STSN considers relevant when computing the output for a point denoted by the
green square in Column 2.
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CHAPTER 6 : Learning Discriminative Motion Features Through Detection

6.1. Introduction

Modern CNN based detection models have been highly successful on various image under-

standing tasks such as edge detection, object detection, semantic segmentation, and pose

detection [98, 99, 100, 101, 102, 46, 103, 104, 105, 114, 107, 4, 72, 115, 116, 1, 66]. However,

such models lack the means to learn motion cues from video data, and thus, they have not

been used as widely for video understanding tasks where motion information plays a critical

role.

Prior work [117, 118, 119] has attempted to address this issue by adopting two-stream

architectures, where one stream learns appearance features, while the other stream aims to

learn motion cues extracted from optical flow inputs. However, these models are expensive

since they require processing optical flow with an additional CNN stream.

Recently, there have been many attempts to learn effective video representations with 3D

convolutional networks [120, 121]. In principle, such models are capable of capturing salient

temporal and motion features, directly optimized for the end task. However, due to their

high computational cost, 3D CNNs typically operate on very small spatial resolution inputs,

and as a result are not very good at detecting fine grained visual cues such as the pose of a

person. Furthermore, it has been recently shown that 3D CNNs optimized from RGB data

for action recognition tend to be surprisingly insensitive to temporal ordering of frames [122].

This suggests that in practice they capture little motion information. Thus, it is typically

necessary to apply them to optical flow inputs in order to effectively leverage motion.

In this work, we propose a learning scheme that allows modern detection models (e.g., Faster

R-CNN) to learn motion cues directly from the RGB video data while being optimized

for a discriminative video pose estimation task. Given a pair of annotated frames from

the same video—Frame A and Frame B—we train our model to detect pose in Frame A,
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Discriminative Motion Features (DiMoFs)

Frame B Pose Detection in Frame A

Figure 33: We extend modern detection models (e.g., Faster R-CNN) with the ability to
learn discriminative motion features (DiMoFs) from RGB video data. We do so by training
the detector on pairs of time-separated frames, with the objective of predicting pose in one
frame using features from the other frame. This task forces the network to learn motion
“offsets” relating the two frames but that are discriminatively optimized for detection. Our
learned DiMoFs can be used on a variety of applications: salient motion localization, human
motion estimation, improved pose detection and keypoint tracking, spatiotemporal action
localization, and fine-grained action recognition.

using the features from Frame B. To achieve this goal, our model leverages deformable

convolutions [111] across space and time. Through this mechanism, our model learns to

sample features from Frame B that maximize pose detection accuracy in Frame A. As a

byproduct of our optimization, our model also learns “offsets” capturing the motion relating

Frame A to Frame B. We refer to these offsets as DiMoFs (Discriminative Motion Features)

to emphasize that they are discriminatively optimized for detection. In our experiments, we

show that our DiMoFs model pretrained on pose estimation can subsequently be used for

salient motion localization, human motion estimation, improved pose detection, keypoint

tracking, spatiotemporal action localization, and fine-grained action recognition.

6.2. Related Work

Detection in Images. Modern object detectors [98, 99, 100, 101, 102, 46, 103, 104, 105,

114, 107] are built using deep CNNs [26, 60, 96]. One of the earlier of such object detection
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systems was R-CNN [46], which operated in a two-stage pipeline, first extracting object

proposals, and then classifying each of them using a CNN. To reduce the computational

cost, RoI pooling operation was introduced in [98, 102]. A few years ago, Faster R-CNN [101]

replaced region proposal methods by another network, thus eliminating a two stage pipeline.

Several methods [114, 107] extended Faster R-CNN into a system that runs in real time

with little loss in performance. The recent Mask R-CNN [99] introduced an extra branch

that predicts a mask for each region of interest, Finally, Deformable CNNs [111] leveraged

deformable convolution to model deformations of objects more robustly. While these prior

detection methods work well on images, they are not designed to exploit motion cues in a

video– a shortcoming we aim to address.

Detection in Videos. Several recent methods proposed architectures capable of aligning

features temporally for improved object detection in video [18, 5, 123]. The method in [123]

proposes a spatial-temporal memory mechanism, whereas [5] leverages spatiotemporal sam-

pling for feature alignment. Furthermore, the work in [18] uses an optical flow CNN to align

the features across time.

While the mechanisms in [5, 123] are useful for improved detection, it is not clear how to

use them for motion cue extraction, which is our primary objective. Furthermore, models

like [18] are redundant since they compute flow for every single pixel, which is rarely nec-

essary for higher level video understanding tasks. Using optical flow CNN also adds 40M

extra parameters to the model, which is costly.

Two-Stream CNNs. Recently, two-stream CNN architectures have been a popular choice

for incorporating motion cues into modern CNNs [117, 118, 124, 125, 126, 119, 127, 128].

In these types of models, one stream learns appearance features from RGB data, whereas

the other stream learns motion representation from the manually extracted optical flow

inputs. The work in [124, 125] leverages two-stream architectures for learning more effective

spatiotemporal representations. Recent methods in [129, 130, 127] explored the use of

different backbone networks for action recognition tasks. Furthermore, various techniques
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Figure 34: An illustration of our Discriminative Motion Feature (DiMoFs) training proce-
dure. Given Frame A and Frame B, which are separated by δ steps in time, our goal is
to detect pose in Frame A using the features from Frame B. First, we extract multi-scale
features from both frames via a backbone CNN with shared parameters. Then, at each
scale, we compute the difference between feature tensors A and B. From these tensor differ-
ences, offsets ∆pn are predicted for each pixel location pn. The predicted offsets are used
to re-sample feature tensor B. As a last step, the resampled feature tensors from each scale
are fed into a multi-scale detection head, which is used to predict the pose in Frame A. Our
scheme optimizes end-to-end the DiMoFs network so that the feature tensors re-sampled
from Frame B maximize the pose detection accuracy in Frame A.

have explored how to fuse the information from two streams [119, 128, 126]. However, these

two-stream CNNs are costly and consume lots of memory. Learning discriminative motion

cues from the RGB video data directly instead of relying on manually extracted optical flow

inputs could alleviate this issue.

3D CNNs. Currently the most common approach for learning features from raw RGB

videos is via 3D convolutional networks [120]. Whereas the method in [120] proposes a 3D

network architecture for end-to-end feature learning, the recent I3D method [121] inflates

all 2D filters to 3D, which allows re-using the features learned in the image domain. Ad-

ditionally, there have been many recent attempts at making 3D CNNs more effective by

replacing 3D convolution with separable 2D and 1D convolutions [131, 24, 132, 133].

While modern 3D CNNs are effective on popular action recognition datasets [121, 134, 135],

3D CNNs are not designed for tasks that require detection of fine-grained visual cues since

they operate on small spatial resolution to accommodate long video clips. Furthermore, it
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has been shown that 3D CNNs do not actually learn motion cues [122], and that they still

need to rely on two stream architectures.

Relational Reasoning. There have been several methods modeling temporal relations

in videos [136, 23]. The work in [136] learns weights for modeling ”cause and effect” type

of relationship. Furthermore, a similar method to ours [23] proposes a temporal relational

module for reasoning about temporal dependencies between video frames. However, the

proposed relational module does not actually learn motion cues, and works effectively only

when videos have strong temporal order [23], which many datasets do not [121, 134, 135]. In

contrast, we aim to learn discriminative motion cues, which encode more general information

and should be useful even if videos are not temporally ordered.

6.3. Learning Discriminative Motion Features

Our goal is to define a training procedure to learn discriminative motion features (DiMoFs)

from RGB videos using a detection model (e.g., Faster R-CNN). Consider the example in

Figure 34, which shows a man closing the car door. In order to recognize this action (i.e.,

closing the door), we do not need to know the motion of every single pixel in the image. Just

knowing how the hand of the person moves relative to the car gives us enough information

about the action. The key question is: how can we learn such motion information discrim-

inatively? To do this, we formulate the following task. Given two video frames—Frame A

and Frame B—our model is allowed to compare Frame A to Frame B but it must predict

Pose A (i.e., the pose in Frame A) using the features from Frame B.

At first glance, this task may look overly challenging: how can we predict Pose A by merely

using features from Frame B? However, suppose that we had body joint correspondences

between Frame A and Frame B. In such a scenario, this task would become trivial, as we

would simply need to spatially “warp” the feature maps computed from frame B according

to the set of correspondences relating frame B to frame A. Based on this intuition, we design

a learning procedure that achieves two goals: 1) By comparing Frame A and Frame B, our
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Frame t Frame t+10 Farneback Flow Predicted Human  
       MotionMotion Saliency MapChannel 99 (x,y)Channel 123 (x,y)

Figure 35: A figure with our DiMoFs visualizations. In the first two columns, we visualize
a pair of video frames that are used as input by our model. The 3rd and 4th columns depict
2 (out of 256) randomly selected DiMoFs channels visualized as a motion field. It can be
noticed that the DiMoFs capture primarily human motion, as they have been optimized for
pose detection. Different channels appear to capture the motion of different body parts,
thus performing a sort of motion decomposition of discriminative regions in the video. In
the 5th column, we display the magnitudes of summed DiMoFs channels, which highlight
salient human motion. Finally, the last two columns illustrate the standard Farneback flow,
and the human motion predicted from our DiMoFs. To predict human motion we train a
linear classifier to regress the (x, y) displacement of each joint from the offset maps. The
color wheel, at the bottom right corner encodes motion direction.

model must be able to extract motion offsets relating these two frames. 2) Using these

motion offsets our model must be able to rewarp the feature maps extracted from Frame B

in order to optimize the accuracy of pose detection in Frame A.

To achieve these goals, we first feed both frames through a backbone CNN with shared

parameters. The aim of the backbone is to extract high-level discriminative features facili-

tating the computation of pose correspondences from the two frames. Then, the backbone

feature maps from both frames are used to determine which feature locations from Frame

B should be sampled for detection in Frame A. Finally, the resampled feature tensor from

Frame B is used as input to the pose detection subnetwork which is optimized to maximize

accuracy of Pose A.

Backbone Architecture. As our backbone network we use a Feature Pyramid Net-

work [137] based on a ResNet-101 [96] design. We note, however, that our system is not

constrained to this specific architecture design, and that it can easily integrate other back-

bone architectures as well.
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Learning to Sample Features. Initially, we feed Frame A and Frame B through our

backbone CNN, which outputs feature tensors f
(s)
A and f

(s)
B at four scales s ∈ {1, 2, 3, 4}.

Then, we compute the difference d
(s)
A,B = f

(s)
A − f

(s)
B , at each of the four scales. The resulting

feature tensor d
(s)
A,B is provided as input to a 2D convolutional layer, which predicts offsets

∆pn (DiMoFs) at all locations pn. The offsets are used to spatially rewarp (sample) the

feature tensor f
(s)
B .

We implement the sampling mechanism via a deformable convolutional layer [111], which

takes 1) the predicted offsets ∆pn, and 2) the feature tensor f
(s)
B as its inputs, and then

outputs a newly sampled feature tensor g
(s)
A,B. Intuitively, the newly resampled feature tensor

g
(s)
A,B should encode all the relevant information needed for accurate pose detection in Frame

A. We use subscript (A,B) for g
(s)
A,B to indicate that even though g

(s)
A,B was resampled from

tensor f
(s)
B , the offsets for resampling were computed using d

(s)
A,B, which contains information

about both feature tensors. An illustration of our architecture is presented in Figure 34.

Multi-Scale Detection Head. We employ a multi-scale detection head as is done in the

Feature Pyramid Network [137]. The outputs of RoI Align [99] applied on the resampled

feature tensor g
(s)
A,B are then fed into three branches optimized for the following 3 tasks: 1)

binary classification (person or not person), 2) bounding box regression (predicting region

bounds) and 3) pose estimation (outputting a probability heatmap per joint). Our clas-

sification and bounding box regression branches are based on the original Faster R-CNN

design [101], whereas our pose heatmap branch is designed according to the architecture of

the ICCV17 PoseTrack challenge winner [21].

6.4. Interpreting DiMoFs

Before discussing how DiMoFs can be employed in discriminative tasks (Section 6.5), we

would like to first understand how the motion cues are encoded in DiMoFs. It turns out

that interpreting what the DiMoFs have learned, is nearly as difficult as analyzing any

other CNN features [138, 139]. The main challenge comes from the high dimensionality
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of DiMoFs: we are predicting 256 (x, y) displacements for every pixel at each of the four

scales.

In Columns 3, 4 of Figure 35, we visualize two randomly selected offset channels as a motion

field. The DiMoFs visualized here were obtained by training our model for pose estimation

on the PoseTrack dataset, as further discussed in the experiments section. Based on this

figure, it is clear that DiMoFs focus on people in the videos. However, it is quite difficult

to tell what kind of motion cues each of these channels is encoding. Specifically, different

DiMoFs maps seem to encode different motions rather than all predicting the same solution

(say, the optical flow between the two frames). This makes sense, as our DiMoFs are dis-

criminatively trained. The network may decide to ignore motions of uninformative regions,

while different DiMoFs maps may capture the motion of different human body parts (say, a

hand as opposed to the head). Thus, our DiMoFs can be interpreted as producing a motion

decomposition in different channels of the most discriminative cues in the video.

6.4.1. Human Motion Localization and Estimation

First, we observe that the magnitudes of our learned DiMoFs encode salient human motion,

which we visualize in Column 5 of Figure 35. Then, to verify that our learned DiMoFs

encode human motion relating the two frames we propose a simple visualization. For each

point pn denoting a body joint, we extract 2048-dimensional (512 channels concatenated

across 4 scales) DiMoFs feature vector fn at that specific point. Then, a linear classifier is

trained to regress the ground truth (x, y) motion displacement of this body joint from the

feature vector fn. During inference, we apply our trained classifier on every pixel of the

image in a fully convolutional manner via a 1× 1 convolution.

In Column 7 of Figure 35, we visualize our predicted motion outputs. We show Farneback’s

optical flow in Column 6 of the same Figure. Note that our predicted human motion matches

quite well Farneback optical flow, especially in regions containing people. The fact that we

can recover flow with our very simple linear prediction scheme suggests that our learned
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Figure 36: We extend our DiMoFs architecture for spatiotemporal action localization. Given
a pair of video frames–Frame A and Frame B—we output for each person detected in Frame
A, a bounding box and an action class. Up until the RoI Align, our model operates in the
same way as for the pose detection task. Then, RoI Align is applied on 1) the multi-scale
FPN feature tensors from Frame A (appearance), and 2) the multi-scale DiMoFs (motion).
These RoI features are then fed into separate MLPs, and the resulting 1024-dimensional
features are used to predict a bounding box and an action class for each RoI in Frame A.

DiMoFs capture cues related to human motion. Furthermore, we point out that compared

to the standard Farneback optical flow, our motion fields look less noisy.

6.5. Detection and Recognition with DiMoFs

In this section, we discuss how DiMoFs benefit pose estimation and tracking. We also show

how to adapt the DiMoFs architecture for the tasks of spatiotemporal action localization

and fine-grained action recognition.

Pose Detection. During training for a video pose detection task (see Section 6.3), we

select Frame B by sampling a frame δ time-steps from Frame A, where δ is randomly picked

for each training frame from the set {−10, . . . , 10}. During inference, we similarly feed a

pair of frames into our model, and output pose predictions for Frame A by using the features

from Frame B. Note that this also includes a special case when δ = 0, meaning that Frame

B is chosen to be the same as Frame A. In this special case, we can simply initialize the

feature difference tensors d
(s)
A,B to zeros, and then proceed as before. This allows us to train

our pose detector on videos, and then later test it on still-images.
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Figure 37: A high-level overview of our approach for learning fine-grained action recognition
features. Initially, we use our DiMoFs model to extract pose and DiMoFs features from a
given pair of video frames. We then accumulate these pose and DiMoFs features across the
entire Diving48 training set, and cluster them using a k-means algorithm. The resulting
cluster assignment IDs are then used as pseudo ground truth labels to optimize our action
recognition features, as illustrated in Figure 36.

Keypoint Tracking. We consider the problem of tracking human body keypoints in video.

We approach this task using the same ICCV17 PoseTrack winning model [21] as we did for

pose detection. The tracking system in [21] consists of two stages: 1) keypoint estimation

in frames, and 2) bipartite graph matching to link the tracks across adjacent frames. We

simply replace the baseline model in stage 1) with our DiMoFs learned model. Note that

both networks have the same network architecture, but differ in their training procedures.

As will be shown later, our DiMoFs training scheme leads to better keypoint tracking results.

6.5.1. Spatiotemporal Action Localization

We introduce a few simple modifications to incorporate our learned DiMoFs into the Faster

R-CNN architecture for spatiotemporal action localization (see Figure 36). Just as before,

the model takes a pair of video frames as input. However, in this case the model outputs

bounding boxes for Frame A, and an action class for each bounding box. We conjecture

that a good spatiotemporal action localization model needs 1) strong visual appearance

features associated with Frame A, and 2) motion features that encode how the person is

moving between Frames A and B. While the appearance information is provided by the

Frame A features computed through the backbone network, the motion cues are captured

by our learned DiMoFs.
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We keep the operations in the backbone the same as they were for the pose detection task.

To adapt our pose estimation architecture to the problem of action localization, we remove

all deformable convolutional layers as we do not need to resample features from B into

Frame A anymore. Afterwards, we predict regions of interest (RoIs) in the same manner

as we did for the pose detection task and then apply RoI Align separately on the visual

features, and on the DiMoFs. Afterwards, separate 2-layer MLP head is applied to each

type of features, and the resulting feature tensors are concatenated together to predict the

bounding box, as well as its associated action class (See Figure 36).

6.5.2. Fine-Grained Action Recognition

Our model operates on frame pairs and it is not designed to process long video sequences,

unlike 3D CNNs for action recognition [120, 121, 131, 24, 132, 133]. However, our DiMoFs

model is explicitly designed to detect fine-grained cues such as human pose and subtle

movements of various body parts. This suggests that DiMoFs can potentially be leveraged

for fine-grained action recognition. We achieve this goal through a procedure inspired by the

work of Caron et al. [140] who propose a two-stage deep clustering method for unsupervised

learning of still-image features. Initially, we use our DiMoFs model (see Fig. 34) to extract

the coordinates of each body part of every person in a video. We also extract DiMoFs

features associated with each body joint and reduce them to 15 dimensions using PCA.

We then concatenate these features and cluster them via K-means using K = 100 clusters.

Intuitively, such a clustering procedure should yield clusters sharing similar pose and body

motion patterns. We illustrate this procedure in Figure 37.

Afterwards, we train our spatiotemporal action localization network (see Figure 36) to

predict such cluster IDs. Thus, instead of predicting action classes, we use cluster IDs as

pseudo-ground truth labels. The rationale behind this choice is that directly predicting

action classes from pairs of frames is a nearly-impossible task, especially in the case of fine-

grained classification where the same poses occur in many different categories. On the other

hand, predicting pose cluster IDs is a better posed task. At the same time, the aggregation
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Figure 38: Pose detection results on the PoseTrack dataset. Our model predicts pose in
Frame A using features from a Frame B that is δ time-steps away. During training, our
model is optimized on frame pairs with random time-gaps δ ∈ {−10, . . . , 10}. Here, we
present the results obtained by using different values of δ at inference time. As δ becomes
large the motion between frames may become substantial. Yet, the accuracy of our model
drops gracefully as δ deviates from 0. This confirms that our model estimates the human
motion between the two frames reliably.

of pose cluster IDs over the entire video (e.g. in the form of a simple histogram) can provide

a strong descriptor for action recognition, disambiguating the recognition problem we had

in a single pair of frames. Inspired by this intuition, we initialize our spatiotemporal action

localization with weights learned during our DiMoFs training procedure and optimize it

for pose cluster ID prediction. Afterwards, we evaluate the model on all pairs of frames in

the video (sampled with time-gap δ = 5) and obtain the 100 dimensional pose cluster ID

prediction for each pair. The final classification is performed by training a shallow 2-layer

MLP on the 100-dimensional vector obtained by summing up the pose ID activations for

all pairs in the same video.

6.6. Experiments

In this section, we present results showing the benefit of our DiMoFs on the tasks discussed

in the previous section: 1) pose detection, 2) keypoint tracking, 3) spatiotemporal action
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Method Head Shou Elbo Wri Hip Knee Ank Mean

Girdhar et al. [21] 72.8 75.6 65.3 54.3 63.5 60.9 51.8 64.1
[21] + DiMoFs 75.2 78.5 66.8 56.0 66.7 62.7 54.0 66.3

Table 20: Pose detection results on the PoseTrack dataset measured in mAP. The first
row reports the results of a single-frame baseline [21], which won the ICCV17 PoseTrack
challenge. In the second row, we present the results of our method, which is based on the
same exact model as [21] but it is trained on pairs of frames with our DiMoFs training
scheme (the testing is still done on individual frames). These results indicate consistent
performance gains for each body joint, and a mean mAP improvement of 2.2%.

localization, and 4) fine-grained action recognition.

6.6.1. Pose Detection and Tracking on PoseTrack

In this section, we train and test our method on the PoseTrack [141] dataset, which contains

514 videos, 300 for training, 50 for validation and 208 for testing. The dataset includes

23,000 frames with annotated poses. Our evaluations are performed on the validation set.

We demonstrate the effectiveness of our DiMoFs procedure by showing improved results for

both pose estimation and keypoint tracking with respect to an analogous model trained on

individual frames and thus unable to use motion information.

The Figure 38 illustrates our pose detection results according to the mAP metric for different

values of the time-gap δ used at testing time. The δ values on the x-axis of Figure 38 captures

how far apart Frames A and B are from each other. As expected, the more δ deviates from

0, the lower the accuracy becomes because the motion between two frames becomes more

severe. We discuss below two key findings from the results we obtain.

Results when δ 6= 0. We first observe that the accuracy of our model drops quite grace-

fully as the time-gap δ deviates from 0. By comparison, note the poor performance of the

magenta curve which depicts a näıve baseline that simply copies pose detections from B to

A (i.e., without using Frame A at all). For δ = ±10, the accuracy of such baseline drops by

56.5% mAP with respect to the single-frame baseline [21]. In contrast, our model drops by

only 6.1% mAP for the same δ = ±10. The ability to predict poses from far-away frames
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Method Head Shou Elbo Wri Hip Knee Ank Mean

Girdhar et al. [21] 61.7 65.5 57.3 45.7 54.3 53.1 45.7 55.2
[21] + DiMoFs 62.9 67.2 57.4 45.8 55.5 53.5 46.5 56.0

Table 21: Keypoint tracking results on the PoseTrack dataset using Multi-Object Tracking
Accuracy (MOTA) metric. As our baseline, we use the ICCV17 PoseTrack challenge winning
method [21]. Our model is trained using the same architecture as [21], but using our DiMoFs
training scheme.

suggests that our model reliably estimates the motion between the two frames and warps

accurately the features of frame B for detection in frame A.

Results when δ = 0. In Table 20, we compare our model with the single frame baseline of

Girdhar et al. [21], which won the ICCV17 PoseTrack challenge. We note that our method

is based on the same CNN architecture as [21], but is instead trained on pairs of frames using

our DiMoFs training procedure. The testing when δ = 0, however, is done on individual

frames for both methods.

We observe that DiMoFs outperforms this strong baseline for all joints and by 2.2% on

average. What are the reasons behind these gains? This happens primarily because our

DiMoFs training procedure on pairs of frames enables a form of data augmentation. In

a single-frame training setting, the model learns a pattern connecting Frame A to Pose

A. However, in our DiMoFs training, for each Frame A the model is learning patterns

connecting many different Frames B (as δ is varied) to Label A. Thus, our model leverages

many more (frame, label) pairs, which is beneficial.

Keypoint Tracking. In Table 21, we also demonstrate that our DiMoFs training proce-

dure is helpful for the keypoint tracking task on the same PoseTrack dataset. The results

are measured using the standard Multi-Object Tracking Accuracy (MOTA). We observe

that DiMoFs yields gains in keypoint tracking across all body joints although not as sub-

stantial as in the case of pose estimation. We note that both methods in Table 21 use the

same CNN architecture, but our model is trained using DiMoFs procedure.
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6.6.2. Results of Action Localization on JHMDB

Next, we evaluate the effectiveness of our spatiotemporal action localization model (de-

scribed in subsection 6.5.1). To do this, we use the JHMDB [142] dataset, which contains

928 temporally-trimmed clips representing 21 action classes, with bounding box annota-

tions. We report our results on split 1 using the standard frame-mAP metric with an

intersection-over-union (IOU) threshold set to 0.5.

To show that our new model can leverage the learned DiMoFs for spatiotemporal action

localization, we test our model by feeding it pairs of frames, where Frame B is sampled by

choosing δ = {0, 2, 4, 6, . . . , 38, 40}. We illustrate these results in Figure 39, which displays

spatiotemporal action localization mAP versus the time-gap δ between the two frames.

From this figure, we observe that the accuracy is at its lowest when δ = 0, which makes

sense because the model cannot leverage any motion cues. However, once we increase δ, the

accuracy starts climbing steeply, which suggests that the model is leveraging the learned

DiMoFs features for better spatiotemporal action localization performance. Based on the

figure, we observe that the model reaches its peak performance at δ = 12, which corresponds

to approximately 0.5s in the original video. After that, the accuracy starts going down,

which is expected because 1) the frames that are further away are less informative, and 2)

it becomes harder to estimate long-range motion.

Furthermore, in Table 22, we ablate how different factors affect spatiotemporal action lo-

calization performance. First, we note that inflating a standard Faster R-CNN with the

same backbone as our model to 3D [121] produces poor results (see column 1 of Table 22).

Next, in columns 2 and 3, we report the accuracy of the model that uses exactly the same

model architecture but where DiMoFs have not been trained for detection. From the table,

we observe that such a model performs substantially worse (44.3% and 44.7% for δ = 0 and

10 respectively) than our DiMoFs model (49.6% and 54.4% for δ = 0 and 10 respectively).

Furthermore, we point out that a model without DiMoFs training is not able to exploit

motion cues effectively, which is indicated by a marginal 0.4% improvement between δ = 0
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Figure 39: Our spatiotemporal action localization results on JHMDB dataset as we vary the
time-gap δ separating Frame B from Frame A during inference. Based on these results, we
observe that the performance is lowest at δ = 0, which makes sense as there are no motion
cues to leverage. However, once δ gets larger, the accuracy increases sharply indicating that
the learned DiMoFs contain useful motion cues for spatiotemporal action localization task.

and δ = 10 settings. In contrast, our model exhibits a substantial 4.8% performance boost

when increasing the δ from 0 to 10, which suggests the importance of learning DiMoFs

discriminatively through a detection task. It is also worth noting, that pose information

learned via DiMoFs training is important, i.e., even in a setting where δ = 0, our DiMoFs

model outperforms an equivalent Faster R-CNN by 5.3% (see columns 2 and 4 in Table 22).

Lastly, we point out that learning the appearance features as before, but replacing implicit

motion cues encoded by DiMoFs with explicit optical flow yields 50.6% mAP at δ = 10,

which is substantially worse than our 54.4%.

We also note that while models pretrained using a Kinetics dataset yield better perfor-

mance [143, 144, 145], those results are not directly comparable to our evaluation since

Kinetics is larger and contains many examples from the same classes as JHMDB. In this

section, we aim to show that our model successfully leverages DiMoFs to improve action

localization without resorting to additional action labels.
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1 2 3 4 5 6

DiMoFs Training? X X
Replacing DiMoFs with Optical Flow? X
Faster R-CNN Inflated to 3D? X
δ = 0 at Inference? X X
δ = 10 at Inference? X X X
Mean Frame Average Precision (mAP) 43.8 44.3 44.7 49.6 50.6 54.4

Table 22: We examine how various factors affect spatiotemporal action localization perfor-
mance on JHMDB. We observe that learning DiMoFs discriminatively through detection
outperforms the model with the same architecture but that was not trained with DiMoFs
scheme by 5.3% and 9.7% mAP for δ = 0, and δ = 10 respectively (compare column 2 to
4, and 3 to 6). We also note that replacing DiMoFs offsets with optical flow yields 50.6%
mAP, which is 3.8% worse than using DiMoFs (column 5 vs 6).

6.6.3. Fine-Grained Action Recognition on Diving48

Finally, we evaluate our DiMoFs model on a fine-grained action recognition task (see subsec-

tion 6.5.2 for model description). For this experiment, we use the newly released Diving48

dataset [146], which contains 15, 943 training and 2096 testing videos of professional divers

performing 48 types of dives. We choose this dataset because unlike datasets such as Ki-

netics or UCF101, Diving48 is designed to minimize the bias towards particular scenes or

objects. To do well on Diving48 dataset, it is necessary to model the subtle differences in

body motion cues, and use them to predict the action class (i.e., the type of dive).

In Table 23, we present our quantitative results. In the top half of the table, we examine

performance of our model in comparison to recent 2D CNNs: TSN [22] and TRN [23]. We

also include an interesting baseline that uses directly the histogram of cluster ID from pose

detection (bottom branch in Fig. 37) as features for action recognition (without training the

top-branch in Fig. 37). This yields a pretty solid accuracy of 17.2%. By including DiMoFs

(in addition to pose) for clustering, the accuracy jumps to 21.4%. Note, that if we replace

implicit motion cues encoded by DiMoFs with explicit optical flow the accuracy drops to

18.8%, which is substantially worse than our 21.4%. We also point out that training our

spatiotemporal action recognition model to predict pose cluster IDs further improves the

118



2D Models Pre-training Data Accuracy

TSN (RGB) [22] ImageNet (objects) 16.8
TSN (RGB + Flow) [22] ImageNet (objects) 20.3

TRN [23] ImageNet (objects) 22.8

Ours-init (Pose) PoseTrack (poses) 17.2
Ours-init (Pose+Optical Flow) PoseTrack (poses) 18.8

Ours-init (Pose+DiMoFs) PoseTrack (poses) 21.4

Ours-final (Pose+DiMoFs) PoseTrack (poses) 24.1

3D Models Pre-training Data Accuracy

R(2+1)D [24] None 21.4
C3D [120] Sports1M (actions) 27.6

R(2+1)D [24] Kinetics (actions) 28.9
Ours + R(2+1)D [24] Kinetics + PoseTrack 31.4

Table 23: Our results on Diving48 dataset. In the top half of the table, we show that our
system achieves 24.1% accuracy and outperforms 2D methods TSN [22] and TRN [23]. We
also observe that even using the initial cluster ID histograms as features produces solid
results (i.e. 17.2% and 21.4%). Note that replacing DiMoFs with optical flow reduces the
accuracy by 2.6% (compared to our 21.4%). Our model does not perform as well as the
pre-trained R(2+1)D [24] baseline. However, our pre-training is done on a much smaller
dataset, and on a more general pose detection task. Without Kinetics pre-training, we
outperform R(2+1)D [24] by a solid 2.7% margin. Finally, we show that combining DiMoFs
with pre-trained R(2+1)D [24] improves the results, suggesting complementarity of the two
methods.

performance, and allows our model to achieve 24.1%. These results suggest 1) the usefulness

of our learned pose and DiMoFs features, and also 2) highlight the benefits of optimizing

the network to pseudo ground-truth pose cluster IDs.

In the lower half of the table, we compare our method with popular 3D models [120, 24]

. Our model does not perform as well as the pre-trained long-range 3D CNNs. However,

this comparison is not exactly fair as these 3D models have been pre-trained on larger-scale

action recognition dataset such as Kinetics [121]. In contrast, our model is pre-trained on a

much smaller PoseTrack dataset, which requires significantly less computational resources.

Furthermore, our pre-training is done on a more general pose estimation task, which allows

our learned DiMoFs to generalize to a variety of different tasks as shown in the paper. We

note that without Kinetics pre-training, our model outperforms R(2+1)D [24] baseline by
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a solid 2.7% margin. Finally, we also show that combining our model with the pre-trained

R(2+1)D [24] allows us to further improve the performance, and achieve state-of-the-art

results, which suggests that the two models learn complementary cues.

6.7. Conclusions

In this work, we introduced DiMoFs, discriminatively trained offsets that encode human

motion cues. We showed that our DiMoFs can be used to localize and estimate salient

human motion. Furthermore, we show that as a byproduct of our DiMoFs learning scheme,

our model also learns features that lead to improved pose detection, and better keypoint

tracking. Finally, we showed how to leverage our learned DiMoFs features for spatiotempo-

ral action localization and fine-grained action recognition tasks. Our future work involves

designing unified CNN architectures that can leverage the strengths of modern 3D CNNs,

and detection-based systems. We will release our source code and our trained models upon

publication of the paper.
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CHAPTER 1 : First-Person Action-Object Detection with EgoNet

1.1. Introduction

Our visual sensation is developed along with the neuromotor system while interacting with

surrounding objects [147, 148, 149, 150, 151]. As the visual sensation and motor signal

reinforce each other, it characterizes the way we progressively interact with objects in 3D,

which provides a strong cue to understand the core attributes of a person’s behavior such as

his attention or intentions. For instance, consider a woman entering a canned food corner

at a grocery store as shown in Figure 40. When she schemes through hundreds of canned

foods to find the tuna can that she looks for, she remains 3-5m from the food stand for

efficient search. Once she finds the tuna, she approaches it (1-3m), and then reaches her

left hand to pick the tuna can (<1m). While she gazes at the expiration date in the label

of the can, the distance gets smaller (<0.5m). Not only does the tuna can stimulate her

visual attention but it also affects her physical actions, such as head or hand movements.

We define such object as an action-object—an object that triggers conscious visual and

motor signals. The key properties of an action-object are: (1) it facilitates a person’s

tactile (touching a cup) or (2) visual (watching a TV) interactions and (3) it exhibits a

characteristic distance and orientation with respect to the person.

While in-situ wearable sensors such as gaze tracker with EEG measurements or tactile and

force/torque sensors for muscle movement are viable solutions to identify action-objects

more accurately than distant sensors such as third-person mounted cameras, their integra-

tion into our daily life is highly limited. A fundamental question is “can we detect action-

objects as we observe the person interacting with her/his environment from a first-person

video alone?”. This is challenging despite recent success of robot/computer vision systems

because (a) a person’s gaze direction does not necessarily correspond to action-objects. In

other words, not all objects within the person’s field of view are consciously attended; (b)

action-objects are often task-dependent, which makes it difficult to detect them without
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Figure 40: We predict action-objects from first-person RGBD images (best viewed in color)
where action-objects are defined as objects that facilitate people’s conscious tactile (grab-
bing a food package) or visual interactions (watching a TV). Left: a woman approaches a
shelf to pick up a food item (red). Right: The food (action-object) is detected progressively
as she approaches and reaches her hand to pick it up.

knowing the task beforehand; (c) action-objects are not specific to object category, i.e.,

many object categories correspond to the same action, e.g., TV and a mirror both afford a

seeing action. Therefore, an object specific model cannot represent action-objects.

In this paper, we address these challenges by leveraging a first-person stereo camera sys-

tem and our proposed EgoNet model, a joint two-stream network that integrates visual

appearance (RGB) and 3D spatial cues (depth and height). These two pathways are com-

plementary: one of which learns visual appearance cues, while the other exploits 3D spatial

information indicative of action-objects. These are combined via a joint pathway, which

incorporates a first-person coordinate embedding that learns an action-object spatial distri-

bution in the first-person image. The entire network is jointly optimized to the action-object

ground truth that is provided by the camera wearer. We quantitatively justify the archi-

tecture choices of our EgoNet model and show that it outperforms all prior approaches for

the action-object detection task across multiple first-person datasets. We also show that

EgoNet generalizes well on a variety of novel datasets, even without being adapted to a

specific task as is commonly done [152, 153, 154].
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Scene cooking hotel grocery desk work dining shopping washing
Frames 1030 410 463 491 515 646 674

RGB

DHG

Ground Truth

Table 24: The summary of our first-person action-object RGBD dataset, which captures
people performing 7 different activities. Our dataset contains 4247 frames with RGB, and
DHG (depth, height, grayscale image) inputs as well as annotated per-pixel action-object
masks.

In conjunction with the EgoNet, we present a new first-person action-object RGBD dataset

that includes object interactions during diverse activities such as cooking, shopping, dish-

washing, working, etc. The camera wearer who is aware of the task and who can disam-

biguate conscious visual attention and subconscious gaze activities provides per-pixel binary

labels of first-person images, which we then use to build our action-object model in a form

of EgoNet.

Our framework is different from a classic object detection task because action-objects are

associated with actions without explicit object categories. It also differs from a visual

saliency detection because visual saliency does not necessarily correspond to a specific ac-

tion. Finally, our action-object task differs from activity recognition because we detect

action-objects by exploiting common person-object spatial configurations instead of model-

ing activity-specific interactions, which makes our model applicable to different activities.

Why First-Person? Precisely identifying action-objects is critical for measuring the in-

ternal state of humans and answering questions such as “what is that person doing?”, “what

will he do next?”. However, answering these questions from a third-person perspective is of-

ten challenging because a person’s actions are captured from a relatively large distance and

possibly from a suboptimal orientation, which makes it difficult to recognize that person’s

actions and understand his intentions. Furthermore, a first-person view contains inherent
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Figure 41: Our proposed EgoNet architecture (best viewed in color) takes as input first-
person RGB and DHG images, which encode 2D visual appearance and 3D spatial cues
respectively. The fully convolutional RGB pathway then uses the visual appearance cues,
while the fully convolutional DHG pathway exploits 3D spatial information to detect action-
objects. The information from both pathways is combined via the joint pathway, which also
implements the first-person coordinate embedding, and then outputs a per-pixel action-
object probability map.

task-intention via a person’s head and body orientation relative to the objects, and there-

fore, the task information does not need to be modeled explicitly using action recognition

as is commonly done in prior work [154, 152].

1.2. Related Work

Complementary Object and Activity Recognition in Third-Person. Actions are

performed in the context of objects. This coupling provides a complementary cue to recog-

nize actions. Wu et al. [155] leveraged object information to classify fine-grained activities.

Yao and Fei-Fei [156, 157] have presented a spatial model between human pose and objects

for activity recognition. Some approaches also used low level bag-of-feature models to learn

the spatial relationship between objects and activities from a single third-person image [158].

Conversely, the activity can provide a functional cue to recognize objects [159, 160, 161].

Such a model becomes even more powerful when incorporating the cues of how the object

is physically manipulated [162, 163, 164]. In addition, object affordance can be learned

by simulating human motion in the 3D space [165, 166]. Furthermore, Gori et al. [167]

proposed to recognize activities from a third-person robot’s view using people detections.

Whereas most of these methods require detected people or body pose as an input, our work

leverages a first-person view and does not need to detect people or human pose a priori.
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First-Person Object Detection. There exist multiple prior methods that explore object

detection from first-person images as a main task [153, 168], or as an auxiliary task for

activity recognition [169, 152, 154, 170, 171] or video summarization [172, 173]. Below we

summarize how our action-object detection task is different from this prior work.

The work in [152, 174] attempts to predict gaze from the first-person images and use it

for activity recognition. However, we know that a person’s gaze direction does not always

correspond to action-objects but instead capture noisy eye movement patterns, which may

not be useful for activity recognition. In the context of our problem, the camera wearer

who was performing the task and who can disambiguate conscious visual attention and

subconscious gaze activities provides per-pixel binary labels of the first-person images, which

we then use to build our action-object model.

The methods in [169, 152] perform object detection and activity recognition disjointly: first

an object detector is applied to find all objects in the scene, and then those detections are

used for activity recognition without necessarily knowing, which objects the person may

be interacting with. Furthermore, these methods employ a set of predefined object classes.

However, many object categories can correspond to the same action, e.g., TV and a mirror

both afford a seeing action, and thus, an object class specific model may not be able to

represent the action-objects accurately.

Some prior work focused specifically on handled object detection [153, 175]. However,

action-object detection task also requires detecting conscious visual interactions that do

not necessarily involve hand manipulation (e.g. watching a TV). Furthermore, from a

development point of view, conscious visual attention is one way for a person to interact.

For instance, for the babies who lack motor skills, their conscious visual attention is the

only thing that indicates their action-objects, and thus detecting only handled objects is

not enough.

The most relevant to our action-object detection task is the work in [154] that detects objects
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of interest for activity recognition [154]. However, this method is designed specifically for

recognizing various cooking activities, which requires detecting mostly handled-objects as

in [153]. Thus, the authors [154] manually bias their method to recognize objects near

hands. Such an approach may not work for other types of activities that do not involve

hand manipulation such as watching a TV, interacting with a person, etc.

Finally, none of the above methods, fully exploit common person-object spatial configura-

tion. We hypothesize that a first-person view contains inherent task-intention via a person’s

head and body orientation relative to the objects. In other words, during an interaction

with an object, people position themselves at a certain distance and orientation relative

to that object. Thus, 3D spatial information provides essential cues that could be used

to recognize action-objects. We leverage such 3D cues, by using first-person stereo cam-

eras, and building an EgoNet model that uses 3D depth and height cues to reason about

action-objects.

Novelty of Action-Object Concept. We acknowledge that our defined concept of action-

objects overlaps with several concepts from prior work such as object-action complexes

(OAC) [176], handled-objects [153, 175], objects-in-action [162], or object affordances [161].

However, we point out that these prior methods typically focus exclusively on physically

manipulated objects, that are specific to certain tasks (e.g. cooking). Instead, the concept

of action-objects requires detecting not only tactile but also conscious visual interactions

with the objects (e.g. watching a TV), without making any a-priori assumptions about the

task that the person will be performing as is commonly done in prior work [153, 175].

Structured Prediction in First-Person Data. A task such as action-object detection

or visual saliency prediction requires producing a dense probability output for every pixel.

To achieve this goal most prior first-person methods employed a set of hand-crafted features

combined with a probabilistic or discriminative classifier. For instance, the work in [172]

uses manually engineered set of egocentric features with a linear regression classifier to

assign probabilities to each region in a segmented image. The method in [177] exploits
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the combination of geometric and egocentric cues and trains random forest classifier to

predict saliency in first-person images. The work in [153] uses optical flow cues and Graph

Cuts [77] to compute handled-object segmentations, whereas [168] employs transductive

SVM to compute foreground segmentation in an unsupervised manner. Finally, some prior

work [174] integrates a set of hand-crafted features in the graphical model to predict per

pixel probabilities of camera wearer’s gaze.

We note that the recent introduction of the fully convolutional networks (FCNs) [27] has led

to remarkable results in a variety of structured prediction tasks such as edge detection [2,

66, 90] and semantic image segmentation [29, 72, 82, 75, 83, 74, 88, 84]. Following this

line of work, a recent method [154], used FCNs for joint object segmentation and activity

recognition in first-person images using a two stream appearance and optical flow network

with a multi-loss objective function.

We point out that these prior methods [154, 174, 168, 153, 77] focus mainly on the RGB or

motion cues, which is a very limiting assumption for an action-object task. When interacting

with an object, people typically position themselves at a certain distance and orientation

relative to that object. Thus, 3D information plays an important role in action-object

detection task. Unlike prior work, we integrate such 3D cues into our model for a more

effective action-object detection.

Additionally, the way a person positions himself during an interaction with an object,

affects where the object will be mapped in a first-person image. Prior methods [172, 177]

assume that this will most likely be a center location in the image, which is a very general

assumption. Instead, in this work, we introduce the first-person coordinate embedding to

learn an action-object specific spatial distribution.

In this work, we show that our proposed additions are simple and easy to integrate into

existing FCN framework, and yet they lead to a significant improvement in the action-object

detection accuracy in comparison to all the prior methods.
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1.3. First-Person Action-Object RGBD Dataset

We use two stereo GoPro Hero 3 cameras with 100mm baseline to capture first-person

RGBD videos as shown in Figure 41. The stereo cameras are synchronized manually and

each camera is set to 1280×960 with 100 fps. The fisheye lens distortion is pre-calibrated

and depth image is computed by estimating disparities between cameras via dense image

matching with dynamic programming.

Two subjects participated in capturing their daily interactions with objects in activities

such as cooking, shopping, working at their office, dining, buying groceries, dish-washing,

and staying in a hotel room. 7 scenes were recorded and 4229 frames with per-pixel action-

objects were annotated by the subjects with GrabCut [178].

In Table 24, we provide a brief summary of our first-person action-object dataset. The

dataset consists of 7 sequences, which capture various people’s interactions with objects. In

comparison to the existing first-person datasets such as GTEA Gaze+ [152], which records

a person’s interactions only during a cooking activity, our dataset captures more diverse

person’s interaction with objects. This allows us to leverage common person-object spatial

configurations and build a more general action-object model without constraining ourselves

to a specific task, as is done in [152]. In the experimental section, we will show that our

model generalizes well on a variety of first-person datasets even if they contain previously

unseen scenes, objects or activities.

1.4. EgoNet

In this section, we describe EgoNet, a predictive network model that detects action-objects

from a first-person RGBD image. EgoNet is a two-stream FCN that holistically integrates

visual appearance, head direction, and 3D spatial cues, and that is specifically adapted

for first-person data via a first-person coordinate embedding. EgoNet consists of 1) an

RGB pathway that learns object visual appearance cues; 2) a DHG pathway that learns to

detect action-objects based on 3D depth and height measurements around the person; and
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a 3) a joint pathway that combines the information from both pathways, and which also

incorporates our proposed first-person coordinate embedding to model a spatial distribution

of action-objects in the first-person view. The detailed illustration of EgoNet’s architecture

is presented in Figure 41. We now explain each of EgoNet’s components in more detail.

1.4.1. RGB Pathway

An action-object that stimulates person’s visual attention typically exhibits a particular

visual appearance. For instance, we are more likely to look at the objects that are col-

ored brightly and stand out from the background visually. Thus, our model should detect

visual appearance cues that are indicative of action-objects. To achieve this goal we use

DeepLab [29], which is a fully convolutional adaptation of a VGG network [60]. DeepLab

has been shown to yield excellent results on problems such as semantic segmentation [29].

Just like the segmentation task, action-object detection also requires producing a per-pixel

probability map. Thus, inspired by the success of a DeepLab system on semantic segmen-

tation task, we adopt a pretrained DeepLab’s network architecture as our RGB pathway.

1.4.2. DHG Pathway

An action-object also possesses the following 3D spatial properties. It exhibits characteristic

distance to the person due to anthropometric constraints, e.g., arm length. For example,

when a man picks up a tuna can, his distance from the can is approximately 0.5m. The

action-object also has a specific orientation relative to a person because of its design. For

instance, when the person carries a cup, he holds it via the handle, which determines the

pose of the cup with respect to that person. These 3D spatial properties are essential for

predicting the action-objects.

Considering this intuition, we use our collected first-person stereo data to encode spatial 3D

cues in a DHG (depth, height, and grayscale) image input. We use depth and height [69] to

represent the 3D environment around the person, and to handle the pitch movements of the

head, i.e., the height information tells us about the orientation of the person’s head with
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RGB Input DHG Input RGB Pathway DHG Pathway

Figure 42: The visualization of the fc7 activation values from the RGB and DHG pathways.
The RGB pathway has higher activations around objects that stand out visually (e.g. a
TV, a frying pan, a trash bin), while the DHG pathway detects objects that are at a certain
distance and orientation relative to the person (e.g. a wine glass, the gloves).

respect to 3D environment. In addition, the gray scale image is used to capture basic visual

appearance cues. Note that we do not use full RGB channels so that the DHG pathway

would focus more on depth and height cues than the visual appearance cues. This diversifies

the information learned by the two pathways, which allows EgoNet to learn complementary

action-object cues. In Figure 42, we visualize the activation values from the fc7 layer of

RGB and DHG pathway averaged across all channels. Note that the two pathways learn

to detect complementary action-object cues. Whereas RGB pathway detects objects that

are visually prominent, DHG pathway has high activation values around the objects with

a certain distance and orientation relative to the person.

1.4.3. Joint Pathway

To combine the information from RGB and DHG pathways for action-object prediction we

introduce a joint pathway. The joint pathway first concatenates 39× 39× 4096 dimensional

fc7 features from both RGB and DHG pathways to obtain a 39 × 39 × 8192 dimensional

tensor. This concatenated fc7 tensor is then also concatenated with the downsampled

X ∈ R39×39 and Y ∈ R39×39 first-person coordinates, which are obtained by generating X,Y
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coordinate mesh-grids associated with every pixel in the original first-person image, and then

downsampling these mesh-grids by a factor of 8, which is how much the resolution of the

output is reduced inside the FCN. Then, the input to the joint pathway is a 39× 39× 8194

dimensional tensor.

Afterwards, we perform a first-person coordinate embedding, which consists of (1) using the

first-person spatial coordinates in a standard convolution operation, and then (2) attaching

another convolutional layer to blend the visual and spatial information in the new layer.

The first-person coordinate embedding allows EgoNet to use visual and spatial features in

conjunction, which we show is beneficial for an accurate action-object detection in first-

person images.

Intuitively the importance of first-person coordinate embedding can be explained as follows.

The way a person positions himself during an interaction relative to an action-object, affects

a location where such an action-object will be mapped in a first-person image. For instance,

a laptop keyboard is often seen at the bottom of a first-person image because we often look

down at it while typing with our hands. Our proposed first-person coordinate embedding

allows EgoNet to learn such an action-object spatial distribution, which is different than

most prior work that assumes a universal object spatial prior (e.g. a center prior) [152, 172].

One may think that our proposed first-person coordinate embedding should have a mini-

mal effect to the network’s performance because traditional FCNs also incorporate certain

amount of spatial information in its prediction mechanism. However, unlike traditional

FCNs, EgoNet uses first-person coordinates as features directly in the 2D convolution op-

eration, which forces EgoNet to produce a different convolutional output than traditional

FCNs would. Despite the simplicity of our first-person coordinate embedding scheme, in

our experiments, we show that it significantly boosts the action-object detection accuracy.
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1.4.4. Implementation Details

We implement EgoNet using Caffe [16]. The RGB and DHG pathways are built upon

DeepLab architecture [29] The entire EgoNet network is trained jointly for 3000 iterations,

at the learning rate of 10−6, momentum of 0.9, weight decay of 0.0005, batch size of 15, and

the dropout rate of 0.5. To optimize the network, we used a per-pixel softmax loss with

respect to the action-object ground truth.

1.5. Experimental Results

In this section, we present quantitative and qualitative results of our EgoNet method on (1)

our collected first-person action-object RGBD, (2) GTEA Gaze+ [152], (3) Social Children

Interaction [25]. Additionally, to gain a deeper insight into an action-object detection

problem we also include an action-object human study where 5 human subjects perform

this task on our dataset.

To evaluate an action-object detection accuracy we use maximum F-score (MF), and average

precision (AP) evaluation metrics, which are obtained by thresholding probabilistic action-

object maps at small intervals and computing a precision and recall curve. Our evaluations

provide evidence for four main conclusions:

• Our human-study indicates that humans achieve better action-object detection accu-

racy than the machines.

• We also demonstrate that our EgoNet model outperforms all other approaches by a

considerable margin on our first-person action-object RGBD dataset.

• Furthermore, we empirically justify the design choices for our EgoNet model.

• Finally, we show that EgoNet performs well on the other novel first-person datasets.
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cooking dining grocery hotel desk work shopping dishwashing mean
MF AP MF AP MF AP MF AP MF AP MF AP MF AP MF AP

DeepLab-Obj [29] 0.091 0.033 0.181 0.084 0.052 0.020 0.158 0.054 0.225 0.105 0.110 0.044 0.077 0.021 0.128 0.051
Judd [179] 0.188 0.091 0.160 0.092 0.048 0.021 0.286 0.189 0.523 0.428 0.102 0.051 0.063 0.030 0.182 0.107
GBVS [180] 0.213 0.113 0.188 0.097 0.043 0.014 0.216 0.128 0.499 0.487 0.098 0.047 0.124 0.063 0.197 0.136

Handled+Viewed-Obj 0.243 0.119 0.436 0.357 0.115 0.034 0.122 0.018 0.197 0.062 0.269 0.175 0.140 0.069 0.217 0.119
DeepLab-RGB [29] 0.342 0.220 0.220 0.143 0.134 0.063 0.146 0.065 0.292 0.213 0.158 0.073 0.262 0.128 0.222 0.129

AOP 0.366 0.264 0.195 0.084 0.180 0.086 0.394 0.222 0.421 0.327 0.137 0.074 0.267 0.178 0.280 0.176
FP-MCG [181] 0.224 0.113 0.400 0.283 0.243 0.126 0.274 0.136 0.597 0.389 0.200 0.093 0.281 0.170 0.317 0.187

DeepLab-DHG [29] 0.330 0.230 0.525 0.246 0.208 0.117 0.267 0.159 0.340 0.264 0.301 0.102 0.290 0.154 0.323 0.181
salObj+D [182] 0.306 0.182 0.551 0.451 0.188 0.105 0.361 0.238 0.501 0.378 0.404 0.284 0.257 0.184 0.367 0.260

EgoNet 0.482 0.415 0.509 0.473 0.193 0.121 0.298 0.183 0.643 0.597 0.242 0.134 0.406 0.272 0.396 0.313
Subject 1 0.419 - 0.576 - 0.408 - 0.477 - 0.556 - 0.357 - 0.415 - 0.458 -
Subject 2 0.453 - 0.551 - 0.327 - 0.444 - 0.516 - 0.518 - 0.436 - 0.464 -
Subject 3 0.453 - 0.604 - 0.197 - 0.453 - 0.581 - 0.340 - 0.439 - 0.438 -
Subject 4 0.506 - 0.631 - 0.358 - 0.489 - 0.579 - 0.371 - 0.407 - 0.477 -
Subject 5 0.488 - 0.660 - 0.227 - 0.444 - 0.598 - 0.373 - 0.435 - 0.461 -

Table 25: The quantitative results for action-object detection task on our first-person action-
object RGBD dataset according to max F-score (MF) and average precision (AP) metrics.
All methods except GBVS were trained on our dataset using a leave-one-out cross validation.
The result indicates that EgoNet has the strongest predictive power with at least 2.9%
(MF) and 5.3% (AP) gain over other methods. We also include our human study results,
which suggest that human subjects achieve better action-object detection accuracy than
the machines across most activities from our dataset.

1.5.1. Action-Object Human Study

To gain a deeper insight into an action-object detection task, we conduct a human study

experiment to see how well humans can detect action-objects from first-person images. We

randomly select 100 different first-person images from each of 7 activities from our first-

person action-object RGBD dataset, and ask human subjects to identify a location of each

action-object in such a first-person image.

We use 100 different images from each activity to keep the experiment’s duration under an

hour. Also, instead of collecting per-pixel or bounding box labels, we ask the subjects to

identify action-objects by clicking at the center of an action-object, which is very efficient.

We collect experimental action-object detection data from 5 subjects.

To obtain full action-object segmentations from the points selected by the subjects, we place

a Gaussian with a width of 60 around the location of human selected point and project it

on MCG [181] regions as is done in [183]. We acknowledge that due to the use of Gaussian

and the errors in the MCG algorithm, our scheme of obtaining per-pixel segmentations

out of a single point may slightly degrade human subject results . However, even under
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3rd Person 3rd Person+MCG Camera WearerEgoNet

Figure 43: Qualitative human study results averaged across 5 human subjects. In many
cases, third-person human subjects detect action-objects correctly and consistently. How-
ever, some activities such as shopping makes this task difficult even for a human observer
since he does not know what the camera wearer was thinking.

current conditions a single experiment took about an hour or even more to complete. Thus,

we believe that our chosen experiment conditions provided the best trade-off between the

experiment duration and the quality of the action-object detection results provided by the

subjects.

In the bottom of Table 25, we provide human subject results according to the MF evaluation

metric. Unlike in our other experiments, the action-object masks obtained by the human

subjects were skewed towards the extreme probability values of 1 and 0, which made the

AP metric less informative. Thus, we only used MF score in this case.

Based on these results, we observe that in most cases, each of the 5 subjects perform better

than the machines. We also observe that the action-object detection results achieved by

the human subjects are quite consistent across most of different activities from our dataset.

This indicates that humans can perform action-object detection from first-person images

pretty effectively, despite not knowing exactly what the camera wearer was thinking (but

possibly predicting it).

In Figure 43, we also present some qualitative human study results, where we average

the predictions across all 5 human subjects. These results indicate that in some instances

(second row), detecting action-objects is pretty difficult even for the human subjects since
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they do not know what the camera wearer was thinking.

1.5.2. Results on Our Action-Object RGBD Dataset

In Table 25 we present the results on our first-person action-object dataset, which con-

tains 4247 annotated images. All the results are evaluated according to the MF and AP

metrics. We include the following baseline methods in our comparisons: (1-2) GBVS [180]

and Judd [179]: two bottom-up visual saliency methods; (3) FP-MCG [181]: a multiscale

object segmentation proposal method that was trained on our first-person dataset; (4) Han-

dled+Viewed Object: our trained method that detects objects around hands, if no hands

are detected it predicts objects near the center of an image, which is where a person may

typically look at; (5) Action-Object Prior (AOP): the average action-object location mask

obtained from our dataset; (6) DeepLab-Obj [29]: a DeepLab network trained for tradi-

tional object-segmentation on our dataset with 41 object classes; (7-8) DeepLab-RGB [29]

and DeepLab-DHG [29]: a DeepLab network trained for action-object detection using RGB

and DHG images as its inputs respectively; (9) salObj+depth [182]: a salient object detec-

tion system, which we adapt to also handle a depth input.

Note that all methods except for GBVS are trained on our dataset. The training is done

using a leave-one-out cross validation as is standard. Based on the results in Table 25,

we observe that EgoNet outperforms all baseline methods by at least 2.9% (MF) and 5.3%

(AP). In Figure 44, we also show our qualitative action-object results. Unlike other methods,

EgoNet correctly detects and localizes action-objects in all cases.

1.5.3. Analysis of EgoNet Architecture

In this section, we quantitatively characterize the design factors of our EgoNet architecture

on our dataset.

Are Separate RGB and DHG Pathways Necessary? An intuitive alternative to our

EgoNet architecture is a single-stream network that concatenates RGB, DHG, and first-
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Figure 44: An illustration of qualitative results on our dataset (the mirror and the fry pan
are the action-objects). Unlike other methods, our EgoNet model correctly recognizes and
localizes action-objects in both instances.

person coordinate inputs and feeds them through the network. We test such a baseline and

report that it yields 0.249 and 0.166 MF and AP scores, which is significantly worse than

0.396 (MF) and 0.313 (AP) attained by our EgoNet model.

What is the Contribution of RGB and DHG Pathways? Our EgoNet model predicts

action-objects based on the visual appearance and 3D spatial cues, which are learned in

the separate RGB and DHG pathways. To examine how important each pathway is, we

train two independent RGB and DHG single-stream networks (both with the first-person

coordinate embedding). Whereas the RGB network obtains 0.363 and 0.250 MF and AP

scores, the DHG network achieves 0.369 and 0.208 MF and AP results. These results

indicate that the 3D spatial cues are equally or even more informative than the RGB cues.

How Beneficial is the Joint Pathway? We note that combining RGB and DHG path-

ways via the joint pathway yields 0.396 and 0.313 according to MF and AP metrics, which

is a substantial improvement over the independent RGB and DHG networks, which achieve

0.363 (MF), 0.250 (AP), and 0.369 (MF), 0.208 (AP) scores respectively. This suggests, that

RGB and DHG pathways learn complementary action-object information, and combining

them via the joint pathway is beneficial.

Comparison with a Deeper Single Stream RGB Model. We also include a single-
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Figure 45: Qualitative results on GTEA Gaze+ dataset. EgoNet predicts action-objects
more accurately and with better localization compared to DeepLab [29] based methods.

stream network baseline that only uses RGB information, but that has about 17M more

parameters than the RGB pathway in our EgoNet architecture. We report that such a

baseline achieves 0.363 (MF) score, which is identical to the RGB pathway in our EgoNet’s

design. Thus, these results indicate that simply adding more parameters to a single-stream

network does not lead to better results.

Do First-Person Coordinates Help? Earlier we claimed that using first-person coordi-

nates in the joint pathway is essential for a good action-object detection performance. To

test this claim, we train a network with an identical architecture as EgoNet except that

it does not use first-person coordinates. Such a network yields 0.333 and 0.232 MF and

AP scores, which is considerably lower than 0.396 and 0.313 MF and AP results produced

by our proposed EgoNet model, that uses first-person coordinates. Such a big accuracy

difference between the two models suggests that first-person coordinates play a crucial role

in an action-object detection task.

Is the Coordinate Embedding Useful? In the previous section, we also claimed that

the first-person coordinate embedding (see Fig. 41) is crucial for a good action-object de-

tection accuracy. To test this claim we train a network with an identical architecture as

EgoNet except that we remove the last layer before softmax loss (i.e. where the coordinate
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breakfast pizza snack salad pasta sandwich burger mean
MF AP MF AP MF AP MF AP MF AP MF AP MF AP MF AP

salObj+D [182] 0.192 0.113 0.233 0.147 0.303 0.225 0.191 0.112 0.202 0.117 0.346 0.248 0.211 0.108 0.240 0.153
DeepLab-RGB [29] 0.358 0.291 0.342 0.261 0.507 0.504 0.344 0.274 0.339 0.291 0.475 0.435 0.348 0.294 0.388 0.336

Judd [179] 0.310 0.223 0.318 0.214 0.522 0.482 0.404 0.329 0.393 0.315 0.452 0.374 0.403 0.304 0.400 0.320
FP-MCG [181] 0.364 0.281 0.456 0.380 0.486 0.399 0.401 0.310 0.411 0.346 0.511 0.454 0.321 0.207 0.422 0.340

AOP 0.403 0.307 0.499 0.443 0.488 0.380 0.337 0.211 0.408 0.273 0.472 0.375 0.369 0.268 0.425 0.322
DeepLab-DHG [29] 0.400 0.344 0.440 0.429 0.577 0.564 0.429 0.374 0.467 0.429 0.456 0.419 0.368 0.304 0.448 0.409

EgoNet 0.433 0.357 0.475 0.383 0.607 0.568 0.512 0.450 0.532 0.505 0.576 0.486 0.454 0.358 0.513 0.443

Table 26: Quantitative results on GTEA Gaze+ dataset for an action-object detection task.
To test each model’s generalization ability on GTEA Gaze+ dataset, we train each method
only on our first-person action-object RGBD dataset. Based on the results, we observe
that EgoNet exhibits the strongest generalization power.

embedding is performed). We observe that the network that does not use the coordinate

embedding produces a 0.313 and 0.202 MF and AP scores, which is considerably lower than

0.396 and 0.313 achieved by our full EgoNet model.

1.5.4. Results on GTEA Gaze+ Dataset

To show strong EgoNet’s generalization ability, in Table 26, we present our action-object

detection results on the GTEA Gaze+ dataset [152], which consists of first-person videos

that capture people cooking 7 different meals. The dataset provides the annotations of

objects that people are interacting with during a cooking activity. In comparison to our

first-person action-object RGBD dataset, GTEA Gaze+ contains many novel scenes, and

many new object classes, which makes it a good dataset for testing EgoNet’s generalization

ability. Additionally, we note that, GTEA Gaze+ does not have depth information in the

scene. Thus, we augment the dataset with depth predictions using [184].

Note that to test each model’s generalization ability, all the methods are trained only on

our first-person action-object RGBD dataset. Based on the results in Table 26, we can

conclude that EgoNet shows the strongest generalization power: EgoNet achieves 0.513

(MF) and 0.443 (AP), whereas the second best method yields 0.448 (MF) and 0.409 (AP).

We also include qualitative detection results from this dataset in Figure 45, which shows

that our method detects action-objects more accurately and with much better localization

than the DeepLab-FCN [29] baselines.
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Figure 46: Our results on Social Children Interaction Dataset. Strong EgoNet’s general-
ization power allows it to predict action-objects in a novel scenes, that contain previously
unseen objects, and activities.

1.5.5. Results on Social Children Interaction Dataset

Furthermore, In Table 27, we present our results on Social Children Interaction dataset [25],

which includes 9 first-person videos of three children playing a card game, building block

towers, and playing hide-and-seek. The dataset consists of 2189 frames that are annotated

with the location of children’s attention location [25]. To evaluate all methods on this

dataset, we place a fixed size Gaussian around the ground truth attention location, and

use it as our ground truth mask to evaluate the results according to MF and AP metrics.

Similar to GTEA Gaze+ dataset, this dataset only contains RGB images so we complement

it with the depth predictions using the method in [184].

To test the generalization power, we train each method only on our first-person action-

object RGBD dataset, and then test it on Social Children Interaction dataset. We report

that EgoNet achieves 0.285 and 0.185 MF and AP, whereas the second best method yields

0.254 (MF) and 0.106 (AP) scores. We also illustrate several qualitative predictions in

Figure 46.
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mean
MF AP

DeepLab-RGB [29] 0.115 0.061
DeepLab-DHG [29] 0.123 0.063

FP-MCG [181] 0.141 0.064
AOP 0.254 0.106

EgoNet 0.285 0.185

Table 27: Quantitative results on Social Children Interaction dataset [25] for the visual
attention prediction task. The dataset contains 9 first-person videos of children performing
activities such as playing cards games, etc. We note that to test each method’s generalization
ability, none of the methods were trained on this dataset. We show that EgoNet outperforms
all the other methods on this dataset, which indicates strong EgoNet’s generalization power.

1.6. Conclusions

In this work, we use a concept of an action-object to study a person’s visual attention

and his motor actions from a first-person visual signal. To do this, we introduce EgoNet, a

two-stream network that holistically integrates visual appearance, head direction, 3D spatial

cues, and that also employs first-person coordinate embedding for an accurate action-object

detection from first-person RGBD data. Our EgoNet leverages common person-object spa-

tial configurations, which allows it to predict action-objects without an explicit adaptation

to a specific task as is done in prior work [152, 153, 154]. We believe that EgoNet’s predictive

power and its strong generalization ability makes it well suited for the applications, such as

personalized video dialog creation, video summarization, dexterous hand skill acquisition,

and empirical understanding of visual sensorimotor systems of humans.
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CHAPTER 2 : Unsupervised Learning of Important Objects

from First-Person Videos

2.1. Introduction

A question “what is where?” attempts to delineate a picture as a spatial arrangement of

objects rather than a collection of unordered visual words, which inspires core computer

vision tasks such as recognition, segmentation, and 3D reconstruction. This spatial arrange-

ment encodes not only the physical relationship between objects in front of the camera but

also the interactions with the photographer standing behind the camera. A picture is al-

ways taken by a photographer reflecting what is important to her/him, which provides a

strong cue to infer the internal states such as his/her intent, attention, and emotion. In

particular, first-person videos capture unscripted interactions with scenes suggesting that

the spatial layout is arranged such that the objects can afford the associated actions, e.g.,

a cup appears to be held by right hand from the holder’s point of view.

In this paper, we aim to detect objects that are important to the photographer from a

first-person video. Since importance is a subjective matter, the photographer is the only

one who can identify an important object. However, we conjecture that it is possible to

detect important objects without the supervision by the photographer or even third-person

labelers because an important object exhibits common visual semantics (what it looks like)

and a spatial layout (where it is in the first-person image).

To achieve this goal, we formulate an important object detection task as an interaction

between the 1) segmentation and 2) recognition agents. Initially, the segmentation agent

generates a candidate important object mask for each image, and relays this mask to the

recognition agent, which then tries to learn a classifier to predict such an important object

mask using visual semantics and spatial cues.

Our segmentation agent is implemented using an MCG projection scheme, which employs
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Figure 47: Given an unlabeled set of first-person images our goal is to find all objects that
are important to the camera wearer. Unlike most prior methods, we do so without using
ground truth importance labels.

the samples generated from an unsupervised segmentation method [181] to propose im-

portant object segmentation masks to the recognition agent. Our recognition agent is

implemented using the visual (“what”) and spatial (“where”) pathways of our proposed

Visual-Spatial Network (VSN), each of which learns to predict important object masks by

asking questions “what an important object looks like?” and “where an important object is

in the first-person image?”. We design these pathways using a fully convolutional network

(FCN) while also embedding a location dependent layer in the spatial pathway to learn the

first-person spatial location prior.

Our VSN then learns to detect important objects without using manually annotated im-

portance labels. We do so via an alternating cross-pathway supervision, in a synergistic

interplay between visual (“what”) and spatial (“where”) pathways, and a segmentation

agent. Each pathway’s output is provided to a segmentation agent, which first generates

a possible important object segmentation mask and then relays it to the other pathway to

be used as a supervisory signal. The supervision proceeds in such an alternating fashion as
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each pathway improves each other, and as the segmentation agent becomes better as well.

Why Unsupervised Learning? Building a framework that can learn without manually

collected labels is particularly essential for first-person important object detection because

the annotation task is not scalable at all unlike object detection/segmentation [185, 186]

where a consensus of third parties from crowdsourcing mechanism can be used. In the

important object detection task, only the camera wearer can perform the annotation task

by looking back on his/her past experiences. Prior methods [152] have used a wearable gaze

tracker to label the camera wearer’s visual attention. However, gaze tracker is invasive and

the data that it captures has no notion of objects. Instead, our paper addresses these issues

via an unsupervised alternating cross-pathway learning scheme, which allows our method

to achieve similar or even better results as the supervised methods do.

2.2. Related Work

Important Object Detection in First-Person. There have been a number of first-

person methods that explored important object detection task either as a main task [187,

153, 168], or as an auxiliary task for an activity recognition [169, 152, 154, 170] or video

summarization [172, 173]. The work in [172, 168, 152, 169] employ hand-crafted appearance

features, egocentric and optical flow features to describe a first-person image, and then train

a discriminative classifier to detect the regions that correspond to the important objects.

The more recent work [154, 187] use FCNs [56] to predict important objects end-to-end.

Whereas the method in [187] employs a two stream visual appearance and 3D network, the

work in [154] exploits the connection between the activities and objects and proposes a two

stream appearance and optical flow network with a multi-loss objective function.

All of these methods use manually annotated important object labels, which may be costly

and difficult to obtain. Our approach, on the other hand, introduces a new unsupervised

learning scheme that allows us to learn important objects without manually labeled impor-

tance annotations.
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Training FCNs with Weakly-Labeled Data. Recently, there have been several deep

learning approaches that proposed learning with weakly labeled or unlabeled datasets [188,

73, 189, 190, 191, 183, 192, 193, 194] . Due to the high cost of obtaining per-pixel labels,

this has been a particularly relevant problem for semantic segmentation.

The weakest form of supervision for semantic segmentation includes image-level labels,

which were used to train FCNs in several prior approaches [183, 193, 194, 190]. Some recent

work [189] used point supervision, which requires almost as much effort as the image-level

labels but also provides some spatial information. Several approaches employed free form

squiggles as a supervisory signal [191, 192] which provides even more information, and

are still easy enough to annotate. Furthermore, several approaches utilized bounding box

level annotations for FCN training [190, 73]. Finally, recent work achieved excellent edge

detection results without using any annotations at all [188].

In comparison to prior work, which focuses on the third-person data, our method focuses

on the first-person data. Unlike third-person object detection/segmentation tasks where

annotations can be obtained via a crowdsourcing mechanism, important object detection

task requires the camera wearer to provide the labels, which severely limits its scalability.

Due to such a constraint, an unsupervised learning framework is particularly important for

the important object detection task in the first-person setting.

2.3. Approach Motivation

Our goal is to 1) recognize and 2) segment important objects from a first-person image in

an unsupervised setting. Thus, we want our method to have two key properties: 1) it needs

to segment the important objects from the background based on the low-level grouping cues

and 2) it needs to be discriminative, i.e, recognize objects that are important and ignore all

the irrelevant objects.

To achieve these goals, we frame an important object prediction task as an interplay between

the 1) recognition and 2) segmentation agents, where a segmentation agent first proposes a
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Figure 48: We implement an interplay between the segmentation and recognition agents
via an alternating cross-pathway supervision scheme inside our proposed Visual-Spatial
Network (VSN). Our VSN consists of the 1) visual (“what”) and 2) spatial (“where”)
pathways, which both act as recognition agents. In between these two pathways, the VSN
uses an MCG projection scheme, which acts as a segmentation agent. Then, given a set
of unlabeled first-person training images, we first guess “where” an important object is
in the first-person image and use an MCG projection scheme to propose important object
segmentation masks. These masks are then used a supervisory signal to train a visual
pathway such that it would learn “what” an important object looks like. Then, in the V2S
round, the predictions from the visual pathway are passed through the MCG projection, and
transfered to the spatial pathway. The spatial pathway then learns “where” an important
object is in the first-person image. Such an alternating cross-pathway supervision scheme
is repeated for several rounds.
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possible important object mask, which a recognition agent then uses as a supervisory signal

to learn an important object classifier based on visual (“what”) and spatial (“where”) cues.

The main challenge of our unsupervised learning framework is to prevent overfitting of

either a segmentation or a recognition agent. If the segmentation agent proposes too many

different segments, the recognition agent will not learn a concept of important objects

(particularly if these segments are not recurring). On the other hand, if the recognition

agent narrowly focuses on predicting one type of object, or an object that appears at a

particular location, it will not generalize across all images. We address the first issue by

feeding the predictions from the recognition agent to the segmentation agent, so that the

target segmentations would consistently improve as the recognition agent gets better. To

tackle the second issue, we force the recognition agent to learn a diverse model by making

it focus on visual (“what”) and spatial (“where”) cues in an alternating fashion.

We now provide more details related to the 1) segmentation and 2) recognition agents that

we want to use for our unsupervised learning task.

2.3.1. Segmentation Agent

The goal of a segmentation agent is to propose segmentation masks of the important objects,

which could then be used by a recognition agent as a supervisory signal. We implement

such a segmentation agent via our introduced MCG projection scheme. We define MCG

projection as a function h(A,R) that takes two inputs: 1) a coarse per-pixel important

object mask prediction A, and 2) a set of regions R obtained from a segmentation method

MCG [181]. The output h(A,R) then captures an important object segmentation mask

proposed by a segmentation agent.

We first run an MCG [181] segmentation algorithm, which segments a given image into

regions R. Then, for every MCG region R, we compute the mean value of all values in A

that fall in the region R, and assign that value to the entire region R. Since MCG regions

overlap with each other, the pixels belonging to multiple overlapping regions, get assigned
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multiple values (from each region they belong to). To assign a single value to a given pixel,

we perform max-pooling, over the values of that pixel in each of the regions that contains

that pixel. This then produces a candidate important object segmentation mask.

2.3.2. Recognition Agent: Motivation

To build a recognition agent that is discriminative, and yet generalizable, we focus on

two distinct aspects of an important object prediction task: the “what” (what does an

important object look like?) and the “where” (where does an important object appear in

the first-person image?).

The Visual Cues (What it looks like?) A natural way to predict important objects is

by learning “what” they look like. Such learned visual appearance cues can then be used

to predict important objects in an image. This is exactly what is done by the supervised

methods, which use the ground-truth data to learn the visual characteristics of “what” a

prototypical important object looks like in a first-person image. However, in the context

of our problem, we do not have access to such ground-truth data. Thus, the key question

becomes whether we can learn to detect important objects despite not knowing “what” they

look like beforehand?

The Spatial Cues (Where it is?) We conjecture that important objects are spatially

arranged in the first-person image to afford the camera wearer’s interactions with those

objects. In other words, by performing activities, and looking at things, the camera wearer

is implicitly labeling what is important to him, which is also captured in a first-person image.

For instance, a cup often appears at the bottom right of a first-person image, because most

people look down at it and also hold it with their right hand.

Thus, since 1) people typically look down at an object, with which they interact, and 2) since

most people are right-handed, we conjecture that many important objects appear at the

bottom-right of a first-person image, which we guess to be at (x, y) location (0.6W, 0.75H),

where W and H denote the width and height of the first-person image. We refer to this

148



location as a spatial important object location prior.

Since we do not have ground truth labels, we cannot directly supervise our network by

telling it “what” an important object looks like. However, we can tell the network “where”

we think an important object is such that the network would learn the visual appearance

cues necessary to recognize “what” appears at that location. In the best case, there will be

a true important object at our specified location, and the network will then learn “what”

that important object looks like. Otherwise, if our guess is incorrect, the network will try to

learn a meaningless pattern of “what” something that is not an important object looks like.

If we make enough correct guesses of “where” the true important objects are, our network

will learn “what” important objects look like without ever using ground truth importance

labels.

2.4. Visual-Spatial Network

To holistically integrate both segmentation and recognition agents, we introduce a Visual-

Spatial Network (VSN) that learns to detect important objects from unlabeled first-person

data. Our network consists of the 1) visual (“what”) and 2) spatial (“where”) pathways,

which act as recognition agents. In between these two pathways, the VSN employs an MCG

projection scheme, which acts as a segmentation agent.

During training, we first use an MCG projection to propose a candidate important object

segmentation mask, which is then used by the visual “what” pathway as a supervisory

signal. Then, the predictions from the visual pathway are used by the segmentation agent

to generate an improved important object segmentation mask, which is used as a supervisory

signal by the spatial “where” pathway. Such a supervision scheme between the two pathways

proceeds in an alternating fashion, allowing each pathway to improve each other, while the

segmentation agent also improves. We refer to such a learning scheme as a cross-pathway

supervision, which we illustrate in Fig. 48.
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2.4.1. Visual “What” Pathway

The visual pathway of our VSN is based on a fully convolutional VGG architecture [60],

which is pretrained for the segmentation task on Pascal VOC dataset with 20 distinct

classes such as airplane, bus, cow, etc. We note that the classes in Pascal VOC dataset

are quite different compared to the important object classes in the datasets that we use

for our experiments. For instance, Pascal VOC segmentation dataset does not include

annotations for classes such as food package, knife, suitcase, sweater, pizza and many more

object classes. In the experimental section, we also verify this claim by showing that the

VGG FCN [60] that was pretrained for the Pascal VOC semantic segmentation task alone

produces poor important object detection results.

We want to make it clear that we do not claim that our method does not use any annotations

at all. Our main claim is that we can learn to detect important objects in first-person

images without manually annotated first-person importance labels. Our network still needs

a general visual recognition capability to differentiate between various visual appearance

cues. Otherwise, due to a noisy supervisory signals that we use to train each pathway,

our network would struggle to learn the visual cues that are indicative of true important

objects.

2.4.2. Spatial “Where” Pathway

The spatial pathway is also based on the pretrained VGG FCN [60]. However, unlike the

visual pathway, the spatial pathway incorporates a two-channel grid of normalized X and

Y coordinates that correspond to every pixel in the first-person image. These X,Y coordi-

nate meshgrids could be obtained by calling a matlab command [X,Y]=meshgrid(1:W,1:H),

where W,H are the width and height of an image respectively. We then use a bilinear inter-

polation to downsample these grids 8 times and concatenate them to the visual fc7 features.

Such concatenated representation is then used as an input to the fc8 layer that predicts

important objects. Note that we do not concatenate X,Y grids with the input image so
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that we could preserve the original structure in the early layers of a VGG network, and use

the VGG weights as an initialization.

2.4.3. Alternating Cross-Pathway Supervision

We now describe our alternating cross-pathway supervision scheme, which is implemented

via a synergistic interplay between the spatial and the visual pathways, and with a segmen-

tation agent in between these two pathways.

Initial Round. In the initial round, we want the visual pathway to predict important

objects based on “what” they look like. It should learn to do so from the important object

segmentation masks provided by an MCG projection step. These initial segmentation masks

are constructed based on our guesses “where” important objects might appear in the first-

person image.

Formally, we are given a batch of unlabeled first-person RGB images, which we denote as

B ∈ RN×C×H×W , where N depicts a batch size, H and W refer to the height and width

of an image, and C refers to the number of channels (C = 3 for RGB images). Then, let

G ∈ RN×H×W denote images with a Gaussian placed around a spatial important object

prior location (0.6W, 0.75H).

Furthermore let h denote the MCG projection function that takes two inputs: 1) a coarse

important object mask A, and 2) MCG regions R, and outputs a candidate important

object segmentation mask h(A,R).

Finally, let f(B) ∈ RN×H×W depict the output of the visual pathway that takes a batch

of first-person images as its input and outputs a per-pixel important objects map for every

image in the batch. Then the cross-entropy loss that we minimize during the initial round

is:
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L = −
N∑

i=1

H×W∑

j=1

[
hj(G

(i), R(i)) log (fj(B
(i)))

+ (1− hj(G(i), R(i))) log (1− fj(B(i)))
]

V2S Round. During the V2S (Visual to Spatial) round, given the important object masks

based on “what” they look like, we want spatial pathway to find image segments in the

first-person image “where” such important objects appear.

Formally, let g(B,X, Y ) ∈ RN×H×W depict the output of the spatial pathway, where in this

case X,Y denote a batch of normalized coordinate grids (each with dimensions N ×H×W

). Then the cross-entropy loss that we minimize during the V2S round is:

L =−
N∑

i=1

H×W∑

j=1

[
hj(f(B(i)), R(i)) log (gj(B

(i), X(i), Y (i)))

+ (1− hj(f(B(i)), R(i))) log (1− gj(B(i), X(i), Y (i)))
]

S2V Round. In the S2V (Spatial to Visual) round, the visual pathway receives important

object masks from the spatial pathway. Then, based on the spatial pathway’s predictions

“where” an important object is, the visual pathway tries to learn “what” those important

objects look like. The cross-entropy loss function that we minimize during the S2V round

is:

L =−
N∑

i=1

H×W∑

j=1

[
hj(g(B(i), X(i), Y (i)), R(i)) log (fj(B

(i)))

+ (1− hj(g(B(i), X(i), Y (i)), R(i))) log (1− fj(B(i)))
]
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Alternation. We alternate our cross-pathway supervision process between the V2S and

S2V rounds until there is no significant change in performance (3-4 rounds). Such an

alternating learning scheme is beneficial because different visual/spatial feature inputs to

the two pathways, force each pathway to maintain focus on objects that exhibit different

spatial/visual characteristics. For instance, the spatial pathway can focus on objects that

are at the same spatial location, but exhibit different visual features. In contrast, the visual

pathway is able to focus on the objects that look similar but are at different locations. Such

an alternation between the two pathways provides diversity to our learning scheme, which

we empirically show to be beneficial.

2.4.4. Using Extra Unlabeled Data for Training

We note that unlike supervised methods that use manually annotated importance labels, we

use unlabeled data, which leads to a much harder learning task. We compensate the lack of

importance labels with large amounts of unlabeled data, a strategy, which was also used by

an unsupervised edge detector [188]. For all of our experiments, we train our VSN on the

combined datasets of (1) first-person important object RGBD [187], (2) GTEA Gaze+ [152],

and (3) five relevant first-person videos downloaded from YouTube (without using the labels

even if they exist). We note that using more unlabeled data to train our model is essential

for achieving the results that are competitive with the supervised methods’ performance.

We point out that our method’s ability to use unlabeled data for training is a big advantage

in comparison to the supervised methods. The performance of CNNs typically improves

with more training data, and unlabeled data is easy and cheap to obtain. In comparison,

getting labeled data is costly and time consuming, especially if it requires per-pixel labels

as in our work.

2.4.5. Prediction during Testing

During testing, we average the predictions from the visual and spatial pathways. Such a

prediction scheme allows each pathway to correct some of the other pathway’s mistakes, and
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achieve a better important object prediction accuracy than any individual pathway alone

would.

2.4.6. Implementation Details

For all of our experiments, we used a Caffe deep learning library [16]. We employed visual

and spatial pathways that adapted the VGG FCN architecture [60]. During training, each of

the optimization rounds was set to 2000 iterations. During those rounds one of the selected

pathways was optimized to minimize the per-pixel sigmoid cross entropy loss, while the

other was fixed. We performed 3 rounds in total, which was enough to reach convergence.

During the training we used a learning rate of 10−7, the momentum equal to 0.9, the weight

decay of 0.0005, and the batch size of 15.

2.5. Experimental Results

In this section, we present quantitative and qualitative results of our VSN method. We test

our method on two first-person datasets, that have per pixel important object annotations:

(1) First-Person Important Object RGBD [187], and (2) GTEA Gaze+ [152] datasets. Even

though both datasets have annotated importance labels, they are quite different. GTEA

Gaze+ dataset captures the activities of cooking different meals, and thus there is less

variation in the scene and the activity itself. In comparison, the first-person important

object RGBD dataset is smaller but captures people doing seven different activities in

pretty different scenes, which makes the dataset more diverse and slightly more challenging.

The First-Person Important Object RGBD dataset has 4247 annotated examples from seven

video sequences, whereas for the GTEA Gaze+ dataset we use 6332 images from 22 different

sequences.

We evaluate the important object detection accuracy using max F-score (MF), and average

precision (AP), which are obtained by thresholding the probabilistic important object maps

at small intervals and computing a precision and recall curve against the ground-truth

important objects.
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FP-AO-RGBD GTEA Gaze+ mean
Method MF AP MF AP MF AP

VGG FCN [60] 0.166 0.106 0.325 0.214 0.246 0.160
GBVS [180] 0.197 0.136 0.383 0.296 0.290 0.216
Judd [179] 0.182 0.107 0.406 0.328 0.294 0.218
DCL [195] 0.255 0.068 0.427 0.120 0.341 0.094

SIOLP 0.278 0.148 0.416 0.209 0.347 0.179
Trained SIOLP‡ 0.282 0.176 0.446 0.351 0.364 0.264
FP-MCG [181]‡ 0.317 0.187 0.447 0.361 0.382 0.274
DeepLab [29]‡ 0.370 0.266 0.472 0.390 0.421 0.328
EgoNet [187]‡ 0.396 0.313 0.536 0.449 0.466 0.381

VSN 0.421 0.316 0.482 0.472 0.452 0.394
VSN+EgoNet‡ 0.455 0.382 0.588 0.604 0.522 0.493

Table 28: The quantitative important object prediction results on the first-person important
object RGBD and GTEA Gaze+ datasets according to the max F-score (MF) and average
precision (AP) metrics. Our results indicate that even without using important object labels
our VSN achieves similar or even better results than the supervised baselines. Supervised
methods are marked with ‡.

As our baselines we use a collection of the methods that were recently shown to perform

well on this task as well as some of our own baselines. EgoNet [187] is a two-stream network

that incorporates appearance and 3D cues to detect important objects. We also include a

DeepLab [29] system, which we train for the important object detection task. Additionally,

we incorporate a MCG [181] method trained for first-person important object detection (FP-

MCG). Furthermore, we include three popular visual saliency methods: (1) Judd [179], (2)

GBVS [180], and (3) Deep Contrast Saliency method [195]. Additionally, we also evaluate

the results achieved by (1) a spatial important object location prior (SIOLP), and (2) a

spatial important object location prior that was obtained by extracting it from the training

data using ground-truth important object labels. Furthermore, to show that the network

that we used to pretrain our VSN performs poorly by itself, we include a VGG FCN [60]

baseline. To obtain important object predictions we simply sum up the probabilities for all

20 predicted Pascal VOC classes. Finally, to show that the predictions of our VSN method

are highly complementary to the best performing EgoNet method’s predictions, we combine

these two methods via averaging, and demonstrate that for each dataset VSN significantly

improves EgoNet’s results.
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EgoNet VSN Ground Truth

Figure 49: The qualitative important object predictions results. Despite not using any
importance labels during training, our VSN correctly recognizes and localizes important
objects in all three cases.

We also note that Judd [179], GBVS [180], DCL [195], SIOLP, VGG-FCN, and our VSN

methods do not use any important object annotations. All the other methods are trained

using the manually annotated important object labels. We also note that all the FCN base-

lines (VGG-FCN, DeepLab, EgoNet and VSN) were pretrained for semantic segmentation

under the same conditions.

We used publicly available implementations of VGG-FCN, GBVS, Judd, FP-MCG [181],

and DeepLab [29] and trained and evaluated all these baselines ourselves. We obtained the

results for EgoNet from the technical report in [187]. To the best of our knowledge EgoNet

is currently the best performing method in this task, and thus, to compare to the most

156



recent and best performing system, we adopted the evaluation procedure from [187].

Our evaluations provide evidence for several conclusions. In Subsections 2.5.1, 2.5.2, we

show that despite not using any important object labels our VSN achieves results similar or

even better than the supervised methods do. Furthermore, In Subsection 2.5.3, we provide

a few ablation experiments, which show that 1) using both visual and spatial pathways is

beneficial, 2) the location of an important object spatial prior is important, and that 3)

using more unlabeled training data leads to better results.

2.5.1. Results on the Important Object RGBD Dataset

In Table 28, we present important object detection results on the First-Person Important

Object RGBD dataset [187], averaged over 7 video sequences from different activities. The

results indicate that our VSN achieves the best per-class mean MF and AP scores. These

results may seem surprising, because unlike EgoNet and all the other supervised baselines,

our VSN does not use any important object annotations. However, VSN uses a larger

amount of unlabeled data for its training, which leads to a better performance.

We also note that the VGG-FCN, which we use as an initialization for both of our VSN

pathways, achieves the worst performance among all the baselines, which suggests that

predicting 20 Pascal VOC classes alone is not enough to achieve a good performance on

the important object detection task. We also point out that combining VSN and EgoNet

predictions, leads to a greatly improved accuracy according to both metrics, which implies

that both methods learn complementary important object information.

In Figure 49, we also compare qualitative important object detection results of our VSN

and a supervised EgoNet model. We show that unlike EgoNet, our VSN correctly detects

and segments important objects in all three cases.
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RGB Input Spatial Pathway Visual Pathway

(a) Spatial pathway performing better than the vi-
sual pathway

RGB Input Spatial Pathway Visual Pathway

(b) Visual pathway performing better than the spa-
tial pathway

Figure 50: A figure illustrating a qualitative important object prediction comparison be-
tween the visual and spatial pathways (best viewed in color). Subfigure on the left illustrates
instances where the spatial pathway’s reliance on location features is beneficial: it detects
small and partially occluded important objects, which the visual pathway fails to detect
accurately. The Subfigure on the right shows instances where the spatial pathway’s reliance
on location features leads to incorrect results: it falsely marks regions in the first-person
image as important objects just because they appear at a certain location in the first-
person image. In contrast, the visual pathway correctly predicts important objects in those
instances.

2.5.2. Results on the GTEA Gaze+ Dataset

In Table 28, we present MF and AP important object detection results on the GTEA Gaze+

dataset [152] averaged over 22 videos. The results indicate that our VSN outperforms all

the other methods according to AP metric, and is outperformed only by EgoNet according

to the MF metric. We also note that just like with the previous dataset, combining VSN

and EgoNet predictions leads to a dramatic accuracy boost according to both metrics.

2.5.3. Ablation Experiments

The Need for Spatial and Visual Pathways. One may notice that the spatial pathway

is a more powerful version of a visual pathway since it can use both spatial and visual cues

to predict important objects. Therefore, a natural question is whether we need a visual

pathway at all.

To answer this question we quantitatively compare our approach to the baselines that use

either two visual pathways (VVN) or two spatial pathways (SSN). We present these results
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Figure 51: Our results demonstrate that using a visual and a spatial pathway (VSN) yields
better important object detection accuracy than using either two visual (VVN) or two
spatial pathways (SSN).

in Figure 51, where we show that our VSN method achieves 0.421 MF accuracy,whereas the

VVN and SSN baselines yield 0.402 and 0.400 MF accuracy respectively, suggesting that

having a visual and a spatial pathway in the network is beneficial.

In Figure 50, we also present a few qualitative comparisons between the predictions from the

visual and spatial pathways. In Subfigure 3.55(c), we illustrate instances where the spatial

pathway’s reliance on location features is beneficial: unlike the visual pathway, it is able

to detect small and partially occluded important objects because they appear at a certain

location. However, in Subfigure 3.55(d), we present instances where the spatial pathway’s

reliance on location features leads to incorrect results: it falsely marks regions in the first-

person image as important objects just because those regions appear at a certain location

in an image. In contrast, in those cases, the visual pathway correctly predicts important

objects because it makes the predictions based on “what” those objects look like.

Thus, these qualitative and quantitative results suggest that the spatial and visual pathways

can complement each other, and thus, having both of them is beneficial.

Selecting a Spatial Important Object Prior. The initial selection of a location prior is

critical to the success of our method. To validate its importance, we run several experiments
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on important object RGBD dataset with different location priors. First, we experiment with

a location (0.5W, 0.5H) where H and W are the height and the width of an image. This is a

center prior commonly used by first-person methods. Using this location prior, the pathway

that was trained the last yields 0.22 MF score, suggesting that in this case, a center location

does not capture important objects well. In comparison, the pathway that was trained the

last in our original model (i.e. the location prior (0.6W, 0.75H)) yields 0.407 MF.

Given how important the selection of a location prior is, we need a principled way to select

it. To do this we propose to utilize a generic hand detector or an unsupervised visual

saliency detector on our dataset (not trained on our dataset). Then, for each image we can

compute a weighted average of XY locations in the image (weighted by the hand detector

probabilities), and then compute an average of these weighted average locations across the

entire dataset.

We report that when applied on an important object RGBD dataset, such a scheme yields

a location prior of (0.542W, 0.713H). Training the VSN using this spatial prior then yields

almost equivalent results as our original model that uses (0.6W, 0.75H) location prior. We

also note that simply detecting hands is not enough to detect important objects. A baseline

that detects all objects and hands in the scene, and then uses objects that are closest to

the hands as important object predictions yields 0.259 MF.

Importance of Unlabeled Training Data Size. Finally, we also want to verify that

using more unlabeled training data leads to better results. To do this, we train VSN on the

same amount of unlabeled data, as there is labeled data used by the supervised methods

(4247 samples). We report that using less unlabeled data leads to 0.316 MF, which is

substantially lower than our original model.

2.6. Conclusions

In this work, we propose to detect important objects from unlabeled first-person images by

formulating our problem as an interplay between the 1) recognition and 2) segmentation
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agents. To do this, we integrate these two agents inside an alternating cross-pathway

supervision scheme of our proposed Visual-Spatial Network (VSN). The MCG projection

scheme (a segmentation agent) proposes important object segmentation masks, whereas the

spatial and visual pathways (recognition agents) use these masks as a supervisory signal

to predict important object masks based on visual semantics and spatial features. We

demonstrate the effectiveness of such scheme by showing that it achieves similar or even

better results than the supervised methods.

We believe that in the future, our method could be extended to other tasks such as first-

person activity recognition, or egocentric video summarization. Furthermore, our method’s

ability to learn without manually annotated labels could be used to learn from large-scale

unlabeled first-person datasets on the web, and in the long run, replace the supervised

methods, which are constrained by the amount of available annotated data.
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CHAPTER 3 : Am I a Baller? Basketball Performance Assessment

from First-Person Videos

3.1. Introduction

First-Person  
  Camera

First-Person Basketball Video

!

        A Performance Measure  
Customized to a Basketball Expert

Basketball Player  
      of Interest

     A Pair of First-Person Basketball Videos
Player A Player B

   A Basketball Expert 

     Player B is better
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       Data-Driven Basketball 
Performance Assessment Model

Learning 
Feedback

       Data-Driven Basketball 
Performance Assessment Model
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Testing

Detected Positive  
        Events

Detected Negative 
        Events
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Figure 52: Our goal is to assess a basketball
player’s performance from unscripted first-
person basketball videos. During training, we
learn such a model from the pairs of weakly
labeled first-person basketball videos. Dur-
ing testing, our model predicts a performance
measure customized to a particular evaluator
from a given video. Our model also discovers
basketball events that contribute positively
and negatively to a player’s performance.

A gifted offensive college basketball player,

Kris Jenkins (Villanova), made a three

point buzzer beater against UNC (2015-

2016 season), and recorded one of the great-

est endings in NCAA championship history.

He was arguably one of the best players in

the entire NCAA tournament. A question

is “what makes him stand out from his peer

players?”. His stats, e.g., average points

and rebounds per game, can be a measure

to evaluate his excellence. However, these

measures do not capture every basketball

aspect that a coach may want to use for

assessing his potential impact in the future

team, which is difficult to measure quantita-

tively. NBA coaches and scouts are eager to

catch every nuance of a basketball player’s

abilities by watching a large number of his basketball videos.

Now consider a college recruitment process where there is a massive number of high school

players. In such conditions, the searching task for the best players becomes much more

challenging, more expensive and also more labor intense. More importantly, the recruiters

need to measure and evaluate a sequence of atomic decision makings, e.g., when does a

player shoot, whether he makes a shot, how good is his passing ability, etc. There exists
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neither universal measure nor golden standard to do this, i.e., most scouts and coaches have

their own subjective evaluation criterion.

In this paper, we address a problem of computational basketball player assessment cus-

tomized to a coach’s or scout’s evaluation criterion. Our conjecture is that a first-person

video captures a player’s basketball actions and his/her basketball decision making in a

form of the camera motion and visual semantics of the scene. A key challenge of first-

person videos is that it immediately violates primary assumptions made for third-person

recognition systems: first-person videos are highly unstable and jittery and visual semantics

does not appear as iconic as in third-person [185].

Our first-person approach innovates the traditional assessment methods, e.g., watching

hours of third-person videos taken by non professional videographers and assessing the

players in them. In contrast, a first-person video records what the player sees, which directly

tells us what is happening to the player himself, e.g., the body pose of a point guard who is

about to pass at HD resolution while a third-person video produces a limited visual access to

such subtle signals. Furthermore, the 3D camera egomotion of the first person video reflects

the decision making of how the player responds to the team configuration, e.g., can I drive

towards the basket and successfully finish a layup? Finally, a first-person camera eliminates

the tracking and player association tasks of the third-person video analysis, which prevents

applications of computational approaches for amateur games1.

Our system takes a first-person video of basketball players and outputs a basketball as-

sessment metric that is specific to an evaluator’s preference. The evaluator provides the

comparative weak labels of the performance of the players, e.g., the player A is better than

B based on his own subjective criteria.

Our method first uses a convolutional LSTM to detect atomic basketball events from a first-

person video. Our network’s ability to localize the most informative regions in a first-person

image, is essential for first-person videos where the camera undergoes severe head movement,

1Usage of commercial tracking systems using multiple calibrated cameras is limited due to a high cost [196]
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which causes videos to be blurry. These atomic events are then passed through the Gaussian

mixtures to produce a highly non-linear visual spatiotemporal basketball assessment feature.

Finally, our basketball assessment model is learned from the pairs of labeled first-person

basketball videos by minimizing a hinge loss function. We learn such a basketball skill

assessment model from our new 10.3 hour long first-person basketball dataset that captures

48 distinct college level basketball players in an unscripted basketball game.

Impact Ample money and effort have been invested in recruiting, assessing, and drafting

basketball players every year. However, limited progress has been made on developing

computational models that can be used to automatically assess an athlete’s performance

in a particular sport [197, 198]. As wearable technology advances, cameras can be non-

invasively worn by players, which delivers a vivid sense of their dynamics, e.g., Spanish

Liga ACB has demonstrated a possibility of a jersey camera that allows you to put yourself

in the court [199]. This trend will open up a new opportunity to share experiences and

evaluate performance across players in different continents without bias and discrimination.

Our work takes a first step towards enabling a computational analysis for such first-person

data.

Contribution To the best of our knowledge, this is the first paper that addresses practical

behavioral assessment tasks using first-person vision specific to an evaluator’s preference.

The core technical contributions of the paper include 1) a basketball assessment model that

assesses the players based an an evaluator’s assessment criterion, which we learn from the

pairs of weakly labeled first-person basketball videos; 2) a predictive network that learns

the visual semantics of important actions and localizes salient regions of first-person images

to handle unstable first-person videos and 3) a new 10.3 hour long first-person basketball

video dataset capturing 48 players in an unscripted basketball game.
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3.2. Related Work

Talent wins games, but teamwork and intelligence wins championships. — Michael Jordan

Accurate diagnosis and evaluation of athletes is a key factor to build a synergic teamwork.

However, it is highly subjective and task dependent, and the psychological and financial cost

of such process is enormous. A large body of sport analytics and kinesiology has studied a

computational approaches to provide a quantitative measure of the performance [197, 198,

200, 201, 202].

Kinematic abstraction (position, orientation, velocity, and trajectory) of the players offers a

global centric representation of team behaviors, which allows a detailed analysis of the game

such as the probability of shoot success, rebound, and future movement prediction [200,

201, 203]. Not only an individual performance, but also team performance can be measured

through the kinematic abstraction [202, 198].

These kinematic data are often obtained by multiple third-person videos [196, 201, 198]

where the players and ball are detected using recognition algorithms combined with multiple

view geometry [204]. Tracking and data association is a key issue where the role of the

players provides a strong cue to disambiguate appearance based tracking [205]. Events such

as ball movement, can be also recognized using a spatiotemporal analysis [206]. As players

behave strategically and collectively, their group movement can be predicted [207] and the

ball can be localized without detection. Various computational models have been used for

such tasks, e.g., Dynamic Bayesian Network [208], hierarchical LSTM [209], attention based

LSTM [210] learned from a large collection of third-person videos.

Unlike third-person videos, first-person cameras closely capture what the players see. Such

property is beneficial to understand activities highly correlated with visual attention, e.g.,

object manipulation and social communications. Important objects to the camera wearer

are detected and segmented [172, 211, 153, 168, 187], which can be used to compress life-
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log videos [172, 173]. As visual attention is also related with the intent of the camera

wearer, her/his future movement can be predicted [212]. Beyond individual behaviors, joint

attention is a primary indicator of social interactions, which can be directly computed from

first-person videos [213, 214], and further used for human-robot interactions [171, 167].

In sports, the complex interactions with a scene in first-person videos can be learned through

spatiotemporal visual patterns. For instance, the scene can tell us about the activity [215]

and the egomotion can tell us about the physical dynamics of activity [216]. Joint attention

still exists in team sports which can be described by the team formation [25] and future

behaviors [203].

Unlike previous work that mainly focuses on recognizing and tracking objects, activities, and

joint attention, we take one step further: performance assessment based on the evaluator’s

preference. We introduce a computational model that exhibits strong predictive power when

applied on the real world first-person basketball video data.

3.3. Basketball Performance Assessment Model

We define a measure of performance assessment using a first-person video:

S(V) =

∑T
t=1 p

(1)
t wTφ(Vt,x)
∑T

t=1 p
(1)
t

(3.1)

where V is a first-person video of T number of frames, φ is a visual spatiotemporal basket-

ball assessment feature, and w is a weight vector of performance regressor. Vt ⊂ V is a

segmented video starting at the tth frame with a fixed length, Ts. p
(1)
t ∈ [0, 1] is a relevance

of Vt to evaluate a given player’s performance. x ∈ R2 is the 2D coordinate of the basket-

ball player, i.e., the projection of 3D camera pose computed by structure from motion [204]

onto the canonical basketball court. In Figure 53, we provide a detailed illustration of our

basketball assessment prediction framework.
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3.3.1. Visual Spatiotemporal Assessment Feature

Our first goal is to use a first-person basketball video to build a powerful feature repre-

sentation that could be used for an effective player’s performance assessment. We identify

three key challenges related to building such a representation from first-person basketball

videos: 1) our system needs to handle severe camera wearer’s head motion, 2) we need to

have an interpretable basketball representation in terms of its atomic events, and 3) our

feature representation has to be highly discriminative for a player’s performance prediction

task.

To address these problems, we propose to represent the visual feature of the segmented

video, Vt, as follows, where each function below addresses one of the listed challenges:

φ(Vt,x) = fgm (fevent (fcrop (Vt) ,x)) , (3.2)

where fcrop is a function that handles a severe camera wearer’s head motion by producing

a cropped video by zooming in on the important regions, fevent is a function that computes

the probability of atomic basketball events, and fgm is a Gaussian mixture function that

computes a highly non-linear visual feature of the video.

Zooming-In. A key property of fcrop is the ability to zoom-in to relevant pixels which

allows to learn an effective visual representation for the basketball performance assessment.

Using this regional cropping, we minimize the effect of jittery and unstable nature of first

person videos that causes larger variation of visual data. In our experimental section, we

demonstrate that using fcrop in our model substantially improves the prediction perfor-

mance. Thus, initially we process a first-person video to produce a cropped video:

Vt = fcrop(Vt; wcrop),

where fcrop is parametrized by wcrop, Vt is the cropped video with fixed size Cw×Cw×3×Ts,

167



and Cw is the width and height of the cropping window.

We predict the center of the cropping window by learning wcrop using a fully convolutional

network [88]. To do this, we train the network to predict the location of a ball, which

is typically where most players are looking at. Afterwards, for each frame in a video, we

compute a weighted average of XY location coordinates weighted by the detected ball

probabilities and then crop a fixed size patch around such a weighted average location. We

illustrate some of the qualitative zoom-in examples in Figure 57.

Atomic Basketball Event Detection. To build an interpretable representation in terms

of atomic basketball events, we predict basketball events of 1) sombeody shooting a ball,

2) the camera wearer possessing the ball, and 3) a made shot respectively. Note that the

cropped video focuses on the ball and its visual context, which allows to learn the visual

semantics of each atomic event more effectively. To do this we use a multi-path convolutional

LSTM network, where each pathway predicts its respective atomic basketball event. We

note that such a multi-path architecture is beneficial as it allows each pathway to focus on

learning a single atomic basketball concept. In contrast, we observed that training a similar

network with a single pathway failed to produce accurate predictions for all three atomic

events. Given a cropped video, our multi-path network is jointly trained to minimize the

following cross-entropy loss:

Levent = −
Ts∑

t=1

3∑

b=1

y
(b)
t log p

(b)
t + (1− y(b)

t ) log
(

1− p(b)
t

)
,

where p
(b)
t depicts a network’s prediction for an atomic basketball event b at a time step

t; y
(b)
t ∈ {0, 1} is a binary atomic basketball event ground truth value for frame t and

basketball event b.

We also note that because many important basketball events occur when somebody shoots
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the ball [217, 218], the detected probability p
(1)
t is also later used in Equation (3.1), as a

relevance indicator for each video segment, Vt.

As our fourth atomic basketball event p
(4)
t , we use a binary value indicating whether a

player is in the 2 point or 3 point zone, which is obtained from a player’s (x, y) location

coordinates on the court.

We then split each of the 4 basketball event predictions in half across the temporal dimen-

sion, and perform temporal max pooling for each of the 8 blocks. All the pooled values are

then concatenated into a single vector bt:

bt = fevent(Vt,x; wevent)

Gaussian Mixtures. To build a representation that is discriminative, and yet generaliz-

able, we construct a highly non-linear feature that works well with a linear classifier. To

achieve these goals we employ Gaussian mixtures, that transform the atomic basketball

event feature, into a complex basketball assessment feature, which we will show to be very

effective in our assessment model. Formally, given a vector bt over Ts, we compute the

visual spatiotemporal assessment features for a given video segment as:

φt = fgm

(
bt; {µn,Σn}Nn=1

)

where fgm is parametrized by Gaussian mixtures, {µn,Σn}Nn=1, and N is the number of

mixtures. Each mixture j is defined by a function z(y
(1)
t1
, y

(1)
t2
, . . . , y

(4)
t1
, y

(4)
t2

) = j. Here

y
(i)
t1
, y

(i)
t2
∈ {0, 1} refer to the binary ground truth values associated with an atomic basketball

event i ∈ {1, 2, 3, 4}; the index t1 indicates the first half of an input video segment, whereas

t2 indicates the second half. Every possible combination of these values define one of the

28 = 256 Gaussian mixtures. We learn the parameters of each Gaussian mixture using
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Figure 53: A detailed illustration of our basketball assessment prediction scheme. Given
a video segment from time interval [t, t + 10], we first feed it through a function fcrop,
which zooms-in to the relevant parts of a video. We then apply fevent to predict 4 atomic
basketball events from a zoomed-in video and a player’s (x, y) location on the court. We
then feed these predictions through a Gaussian mixture function fgm, which produces a
highly non-linear visual spatiotemporal assessment feature. Finally, we use this feature to
compute a player’s assessment measure by multiplying it with linear weights learned from
the data, and with a predicted relevance indicator for a given video segment.

maximum likelihood from the training data with diagonal covariances.

3.3.2. Basketball Assessment Prediction

We learn a linear weight w in Equation (3.1) based on the comparative assessment of

players provided by a former professional basketball player in Section 3.4. We minimize the

following hinge loss:

Lw =

D∑

i=1

max

(
0,

(
1

2
− Yi

)(
S(V i1)− S(V i2)

))
, (3.3)

where Yi = 1 if a basketball expert declared Player 1 to be better than Player 2; otherwise

Yi = 0 . S(V i1), S(V i2) depict our predicted performance measure for Players 1, and 2

respectively, V i1 and V i2 are the first-person basketball videos of Player 1 and Player 2

respectively, and D is the number of data points. Then based on Equation 3.1, we can

compute the subgradients of this loss function with respect to w and find w by minimizing

it via a standard gradient descent. In Figure 54, we provide an illustration of such a learning

framework.

Why Linear Classifier? We only have 250 labeled pairs for learning the weights, which

is a small amount of training data. Thus, making a classifier more complex typically results
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Figure 54: An illustration of of our training procedure to learn the linear weights w that are
used to assess a given basketball player’s performance. As an input we take a pair of labeled
first-person basketball videos with a label provided by a basketball expert indicating, which
of the two players is better. Then, we compute visual spatiotemporal basketball assessment
features for all input video segments, and use them to learn weights w by minimizing our
formulated hinge loss function.

in a severe overfitting. Through our experiments, we discovered that linear weights work

the best.

3.3.3. Implementation Details

For all of our experiments involving CNNs, we used a Caffe library [16]. Both networks were

based on DeepLab’s [88] architecture and were trained for 4000 iterations with a learning

rate of 10−8, 0.9 momentum, the weight decay of 5 · 10−5, and 30 samples per batch. The

LSTM layers inside the atomic basketball event network spanned 10 consecutive frames in

the video input. Each pathway in the atomic basketball event network was composed of two

1024 dimensional convolution layers with kernel size 1 × 1 and a 1024 dimensional LSTM

layer. The networks were trained using standard data augmentation. To learn the weights

w we used a learning rate of 0.001 and ran gradient descent optimization for 100 iterations.

3.4. First-Person Basketball Dataset

We present a first person basketball dataset composed of 10.3 hours of videos with 48

college players. Each video is about 13 minutes long captured by GoPro Hero 3 Black

Edition mounted with a head strip. It is recorded at 1280×960 with 100 fps. We record 48

videos during the two days, with a different group of people playing each day. We use 24

videos from the first day for training and 24 videos from the second day for testing. We
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Atomic Events

p(1) p(2) p(3) mean
Tran et al. [120] 0.312 0.428 0.193 0.311
Singh et al [219] 0.469 0.649 0.185 0.434
Bertasius et al [7] 0.548 0.723 0.289 0.520
Ma et al [154] 0.622 0.718 0.364 0.568

Ours: no LSTM & no zoom-in 0.711 0.705 0.192 0.536
Ours: no zoom-in 0.693 0.710 0.248 0.550
Ours: single path 0.678 0.754 0.308 0.580
Ours: no LSTM 0.718 0.746 0.397 0.620

Ours 0.724 0.756 0.395 0.625

Table 29: The quantitative results for atomic basketball event detection on our first-person
basketball dataset according to max F-score (MF) metric. These results show that our
method 1) outperforms prior first-person methods and 2) that each component plays a
critical role in our system.

extract the video frames at 5 fps to get 98, 452 frames for training, and 87, 393 frames for

testing.

We ask a former professional basketball player (played in an European national team) to

label which player performs better given a pair of first-person videos. Total 500 pairs are

used: 250 for training and 250 for testing. Note that there were no players overlapping

between the training and testing splits.

We also label three simple basketball events: 1) somebody shooting a ball, 2) the camera

wearer possessing the ball, and 3) a made shot. These are the key atomic events that drive

a basketball game. In total, we obtain 3, 734, 4, 502, and 2, 175 annotations for each of these

three events respectively.

Furthermore, to train a ball detector we label the location of a ball at 5, 073 images by

clicking once on the location. We then place a fixed sized Gaussian around those locations

and use it as a ground truth label.
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(d) A Pair of Players #4

Figure 55: We randomly select 4 pairs of basketball players, and visualize how our assess-
ment model evaluates each player over time. The red plot denotes the better player in
a pair, whereas the blue plot depicts the worse player. The y-axis in the plot illustrates
our predicted performance measure for an event occurring at a specific time in a player’s
first-person video.

3.5. Experimental Results

3.5.1. Quantitative Results

Atomic Basketball Event Detection. In Table 29, we first illustrate our results for

atomic basketball event detection task. The results are evaluated according to the maxi-

mum F-score (MF) metric by thresholding the predicted atomic event probabilities at small

intervals and then computing a precision and recall curve. First, we compare our model’s

predictions with several recent first-person activity recognition baselines [219, 7, 154] and

also with the successful video activity recognition baseline C3D [120]. We show that our

model outperforms all of these baselines for each atomic event.

Furthermore, to justify our model’s design choices, in Table 29 we also include several

experiments studying the effect of 1) a multi-path architecture, 2) LSTM layers, and 3)

zooming-in scheme. Our experiments indicate that each of these components is crucial

for achieving a solid atomic event recognition accuracy, i.e. the system achieves the best

performance when all three of these components are included in the model.

Basketball Assessment Results. In Table 30, we present our results for assessing 24

basketball players from our testing dataset. To test our method’s accuracy we evaluate

our method on 250 labeled pairs of players, where a label provided by a basketball expert
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Accuracy
Pred. Events GT Events

LRCN [220] 2-pt made shot detector fail -
LRCN [220] 3-pt made shot detector fail -

Ours: no GMs 0.477 -

Ours: no p(3) 0.496 -

Ours: no p(2) 0.515 -

Ours: no p(1) 0.536 -
Ours: single GM-top2 0.537 -

Ours: all weights w set to 1 0.583 -
Ours: single GM-top1 0.609 -

Ours: no p(4) 0.649 -

Ours 0.765 0.793

Table 30: The quantitative results for our basketball assessment task. We evaluate our
method on 250 labeled pairs of players, and predict, which of the two players in a pair is
better. We then compute the accuracy as the fraction of correct predictions. We report
the results of various baselines in two settings: 1) using our predicted atomic events, and
2) using ground truth atomic events. These results show that 1) our model achieves best
results, 2) that each of our proposed components is important, and 3) that our system is
pretty robust to atomic event recognition errors.

indicates, which of the two players is better. For each player, our method produces an

assessment measure indicating, which player is better (the higher the better). To obtain

the accuracy, we compute the fraction of correct predictions across all 250 pairs.

We note that to the best of our knowledge, we are the first to formally investigate a bas-

ketball performance assessment task from a first-person video. Thus, there are no well

established prior baselines for this task. As a result, we include the following list of base-

lines for a comparison.

First, we include two basketball activity baselines: the detectors of 1) 2-point and 2) 3-

point shots made by the camera wearer. We label all instances in our dataset where these

activities occur and discover ≈ 100 of such instances. Note that such a small number of

instances is not a flaw of our dataset, but instead an inherent characteristic of our task.

Such basketball activities belong to a long-tail data distribution, i.e. they occur pretty

rarely, and thus, it is difficult to train supervised classifiers for such activity recognition.

We then train an LRCN [220] model as 1) a 2 point made shot detector, and 2) a 3 point

made shot detector. We report that due to a small amount of training data, in all cases the
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network severely overfit the training data and did not learn any meaningful pattern.

Furthermore, to justify each of our proposed components in the model, in Table 30 we also

include several ablation baselines. First, we study how 1) Gaussian Mixtures (GM) and 2)

the process of learning the weights affect the performance assessment accuracy. We do it

1) with our predicted and 2) with the ground truth atomic events. We show that in both

cases, each of our proposed components is beneficial. In addition, we also observe that our

system is robust to atomic event recognition errors: the accuracy when using the ground

truth atomic events is only 2.8% better compared to our original model.

We also present the performance assessment results when we remove one of the four atomic

events from our system. We show that our method performs the best when all four atomic

events are used, suggesting that each atomic event is useful. Finally, as two extra baselines

we manually select two Gaussian mixtures with the largest weight magnitudes and use each

of their predictions independently (denoted as single GM-top1,2 in Table 30). We show

that our full model outperforms all the other baselines, thus, indicating that each of our

proposed component in our model is crucial for an accurate player performance assessment.

3.5.2. Qualitative Results

In addition, in Figure 55, we also include a more dynamic visualization of how our assess-

ment model works over time. To do this, we randomly select 4 pairs of basketball players,

and visualize how our model evaluates each player over time. The red plot in each pair

denotes the better player, whereas the blue plot depicts the worse player. The y-axis in the

plot illustrates our predicted performance measure for an event occurring at a specific time

in a player’s first-person video.

Furthermore, in Figure 57 we also include examples of short sequences, illustrating 1) a

player’s actions that contributed most positively to his/her performance assessment and also

2) actions that contributed most negatively. We select these action sequences by picking the

first-person video sequences with a largest positive and negative values of the terms inside
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Figure 56: A visualization of basketball activities that we discovered by manually inspecting
Gaussian mixtures associated with the largest basketball assessment model weights w. Each
row in the figure depicts a separate event, and the columns illustrate the time lapse of
the event (from left to right), We discover that the two most positive Gaussian mixtures
correspond to the events of a player making a 2 point and a 3 point shot respectively (the
first two rows), while the mixture with the most negative weight captures an event when a
player misses a 2 point shot (last row).

the summation of Equation 3.1 (which also correspond to positive and negative peaks from

Figure 55). Such terms depict each video segment’s contribution to the overall basketball

skill assessment measure.

We would like to note that it is quite difficult to include such results in an image format,

because 1) images are static and thus, they cannot capture the full content of the videos;

2) images in the paper, appear at a very low-resolution compared to the original 480× 640

videos, which makes it more difficult to understand what kind of events are depicted in

these images. To address some of these issues, we include more of such qualitative examples

in a video format at: https://www.youtube.com/watch?v=lxEuihbPJXA.

Understanding the Feature Representation. Earlier, we claimed that Gaussian mix-

tures produce a highly non-linear feature representation. We now want to get a better

insight into what it represents. To do so we analyze the learned weights w, and then man-

ually inspect the Gaussian mixtures associated with the largest magnitude weights in w.

Upon doing so we discover that the two mixtures with the most positive weights learn to
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(a) The detected events that contributed most positively to a player’s performance.

(b) The detected events that contributed most negatively to a player’s performance.

Figure 57: A figure illustrating the events that contribute most positively (top figure) and
most negatively (bottom figure) to a player’s performance measure according to our model.
The red box illustrates the location where our method zooms-in. Each row in the figure
depicts a separate event, and the columns illustrate the time lapse of the event (from left to
right). We note that among the detected positive events our method recognizes events such
as assists, made layups, and made three pointers, whereas among the detected negative
events, our method identifies events such as missed layups, and missed jumpshots.

177



capture basketball activities when camera wearer makes a 2 point shot, and a 3 point shot

respectively. Conversely, the mixtures with the two most negative weights represent the

activities of the camera missing a 2 point shot, and the camera wearer’s defender mak-

ing a shot respectively. In Figure 56, we include several sequences corresponding to such

discovered activities.

3.6. Conclusions

In this work, we introduced a basketball assessment model that evaluates a player’s perfor-

mance from his/her first-person basketball video. We showed that we can learn powerful

visual spatiotemporal assessment features from first-person videos, and then use them to

learn our skill assessment model from the pairs of weakly labeled first-person basketball

videos. We demonstrated that despite not knowing the labeler’s assessment criterion, our

model learns to evaluate players with a solid accuracy. In addition, we can also use our

model to discover the camera wearer’s activities that contribute positively or negatively to

his/her performance assessment.

We also note that performance assessment is an important problem in many different areas

not just basketball. These include musical instrument playing, job related activities, and

even our daily moments such as cooking a meal. In our future work, we plan to investigate

these new areas, and try to generalize our model to such activities too.
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CHAPTER 4 : Egocentric Basketball Motion Planning

from a Single First-Person Image

4.1. Introduction

Consider LeBron James, arguably the greatest basketball player in the world today. People

often speculate about which of his traits contributes most to his success as a basketball

player. Some may point to his extraordinary athleticism, while others may credit his pol-

ished basketball mechanics (i.e., his ability to accurately pass and shoot the ball). While

both of these characteristics are certainly important, there seems to be a general consensus,

among sports pundits and casual fans alike, that what makes LeBron truly exceptional is

his ability to make the right decision at the right time in almost any basketball situation.

Now, imagine yourself inside the dynamic scene shown in Figure 58, where, as a basketball

player, you need to make a series of moves to outmaneuver your defender and score a

basket. In doing so, you must evaluate your position on the court, your defender’s stance,

your defender’s court position relative to the basket, and many other factors, if you want

to maximize your probability of scoring. For instance, if you observe that your defender

is positioned close to you and leaning more heavily on his right leg, you might exploit

this situation by taking a swift left jab-step followed by a hard right drive to the basket,

throwing your defender off balance and earning you an easy layup. However, if your defender

is standing farther away from you, you may decide to take a few dribbles into an area where

your defender cannot get to you quickly, before stopping for a jump-shot. These are all

complex decisions that have to be made within a split second – doing this consistently well

is challenging.

In this paper, we aim to build a model that mimics this basketball decision-making process.

Specifically, our model maps a first-person visual signal to a plausible egocentric basketball

motion sequence. This is a difficult problem because little is known about how skilled

players make subsecond-level decisions. What we do know is that players make decisions
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First-Person  
  Camera

1-on-1 Basketball Game Input: Initial First-Person View

Basket

Basketball Court

Sparsely Reconstructed 3D Scene

Output: Generated 12D Camera Configuration Trajectory

First-Person Camera  
       on the Player

Defender

Figure 58: Given a single first-person image from a one-on-one basketball game, we aim to
generate an egocentric basketball motion sequence in the form of a 12D first-person camera
configuration trajectory, which encodes a player’s 3D location and 3D head orientation. In
this example, we visualize our generated motion sequence within a sparse 3D reconstruction
of an indoor basketball court.

based on what they see: a player may look at how his or her defender is positioned (i.e.,

feet orientation, torso orientation, etc.) and then, based on that visual information, choose

to drive right or left. Leveraging this insight, in this work, we learn our model from data

recorded using first-person cameras. First-person cameras allow us to see various subtle

details in the basketball game, just as the players do. In contrast, a standard third-person

camera typically records a low-resolution view from a suboptimal orientation, making it

difficult to observe such details. Because these subtle details may be crucial for predicting

where a player will move next, first-person modeling is beneficial.

Our model takes a single first-person image as input and generates an egocentric basket-

ball motion sequence in the form of a 12D first-person camera configurations, encoding a

player’s 3D location and 3D head orientation throughout the sequence. To do this, we first

introduce a future convolutional neural network (CNN) that predicts an initial sequence of

12D camera configurations, aiming to capture how real players move during a one-on-one
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basketball game. We also introduce a goal verifier network, which is trained to verify that

a given camera configuration is consistent with the final goals of real players. Next, we use

our proposed inverse synthesis procedure to synthesize a refined sequence of 12D camera

configurations by optimizing the following objectives: (1) minimize the difference between

the refined configurations and initial configurations predicted by future CNN while also (2)

maximizing the goal verifier network output. Finally, by following the trajectory result-

ing from the refined camera configuration sequence, we obtain the complete 12D motion

sequence.

Our egocentric basketball motion model learns to generate smooth and realistic sequences

that capture the goals of real basketball players. Additionally, our model is learned in

an unsupervised fashion; this is an important advantage, since obtaining labeled behavior

data is costly. Finally, in our experimental section, we show that our method consistently

outperforms standard deep learning approaches such as RNNs [221], LSTMs [222], and

GANs [223].

4.2. Related Work

Using Vision for Behavior Modeling. Developing models that characterize human

behavior in everyday tasks, such as walking or driving, has been a long-standing problem

in computer science. The work in [224] uses a hidden Markov model (HMM) to learn

human driving patterns. Recent work in [225, 226] uses third-person videos of humans

performing simple tasks, like opening a door, to teach robots how to do the same. By

observing them from a third-person view, the method in [227] learns to remind humans of

actions they forgot to do. Recently, there also has been a surge of methods designed to

capture various aspects of social human behavior. For instance, the work in [228] uses a

flow field model to track crowds. Also, the work in [229] develops a tracking method that

can predict walking trajectories for multiple agents simultaneously, while more recent work

in [230] predicts walking trajectories by using a game theoretic approach. Furthermore,

the methods in [231, 232, 233, 234] develop social force or social affinity based methods

181



for predicting pedestrian behaviors. In addition, the method in [235], uses Markov decision

processes to predict the wide receiver trajectories in football, whereas the work in [236] learns

to predict the behavior of soccer players. Finally, the work in [237] uses large amounts of

“top-view” basketball tracking data [196] to train deep hierarchical networks for basketball

trajectory prediction.

In contrast to these prior methods, our data are obtained via first-person cameras, which

allows us to build a model that connects first-person visual sensation to egocentric motion

planning ability. Using such first-person data is our main advantage compared to prior

methods.

First-Person Vision. Most first-person methods have focused on first-person object de-

tection [172, 211, 153, 168, 7, 8] or activity recognition [215, 238, 219, 169, 152, 154, 170].

Several methods have also employed first-person videos for video summarization [172, 173].

Furthermore, recent work in [239] introduced a first-person method for predicting the cam-

era wearer’s engagement, while [9] developed a model to assess a basketball performance

from a first-person video. Additionally, [240] proposed applying inverse reinforcement

learning on first-person data to infer the goals of the camera wearer during daily tasks.

Furthermore, the methods in [212, 203] propose to generate plausible walking trajectories

from first-person images. However, the methods in [203, 212] generate walking trajectories

without really understanding what the camera-wearer’s actual goals are, often resulting in

overly simplistic and unrealistic trajectories.

In contrast to these prior methods, we consider a complex one-on-one basketball game

scenario, for which we not only infer the goals of the camera-wearer, but also generate an

egocentric basketball motion sequence that is aligned with these goals. We also point out

that, unlike the methods in [203, 212] which require depth input or the positions of other

people in the scene, our method operates using only a single first-person RGB input image.
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4.3. Motivation and Challenges

Representing a State. Generating an egocentric basketball motion sequence can be

viewed as the problem of mapping a first-person image x to a sequence y1:M , where each

entry yi is a vector representing a state in this sequence of length M . In this paper, we use

a notation where the entire sequence is denoted as y (without subscript indices), whereas

an ith state in the sequence y is denoted as yi.

We propose to encode each state yi in the sequence as a 12D camera configuration, which

captures 3D location and 3D orientation of the camera on a player’s head. In contrast

to prior models [212, 203] that just use a 2D (x, y) location representation, our selected

camera configuration representation allows us to represent more complex basketball motion

patterns, while still being compact and interpretable. Such representation also enables us

to learn our model without using manually labeled behavioral data.

Generating Motion Sequences. Generating motion sequences that are realistic and

smooth is a challenging problem because the actions taken by the camera wearer are noisy.

As a result, it is difficult to accurately learn the transitions between two adjacent states

from a limited amount of data. Furthermore, due to the recurrent nature of such predictions

(i.e., the predicted state ŷi+1 depends on ŷi), the error starts accumulating and exploding,

which makes it difficult to generate longer sequences accurately. This issue is especially

prevalent with the standard RNN and LSTM approaches, which try to learn such transitions

sequentially.

In this work, we propose a model that first predicts a set of intermediate states that are

consistent with how real basketball players move. Afterwards, we use our proposed inverse

synthesis procedure to generate a full motion sequence. In the experimental section, we

verify the effectiveness of our approach and show that it outperforms methods such as

RNNs, LSTMs, and GANs.
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4.4. Egocentric Basketball Motion Model

In Figure 59, we present a detailed illustration of our egocentric basketball motion model.

First, we use our proposed future CNN to predict an initial sequence of 12D camera con-

figurations, which aim to capture how real players move during a one-on-one basketball

game. After that, we use our proposed inverse synthesis procedure to generate a refined

camera configuration sequence that (1) matches the initial camera configuration sequence

predicted by the future CNN and (2) maximizes the output of the goal verifier network,

which is trained to verify whether a given 12D camera configuration aligns with realistic

one-on-one basketball goals. Finally, by following the trajectory resulting from the refined

camera configuration sequence, we obtain the complete 12D motion sequence. We now

discuss each component of our model in more detail.

4.4.1. Egocentric Camera (EgoCam) CNN

An egocentric camera (EgoCam) CNN is used to map a given first-person image xi into a

12D camera configuration ŷi ∈ R1×12 that encodes the 3D location and 3D orientation of

the camera on a player’s head. We implement our EgoCam CNN using a popular ResNet-

101 [241] architecture. The network is optimized using the following L2 loss:

Lcam = ||ŷi(xi)−K(xi)||22 (4.1)

where ŷi ∈ R1×12 is the predicted camera configuration for an image xi, and K(xi) ∈

R1×12 is a vector that encodes a true player’s 3D location and 3D head orientation. K(xi)

is obtained by flattening the egocentric 3 × 4 camera matrix, which is produced by an

unsupervised structure from motion (SfM) algorithm. However, due to the jittery nature

of first-person images, SfM works only on a small portion of the input images (i.e.≈ 20%

of all images). This motivates the need for an EgoCam CNN, which allows us to generate
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First-Person Input Image

  Predicted 12D Camera  
        Configuration

Future CNN

Camera Configurations in a Sparsely  
       Reconstructed 3D Space

Generated Motion Sequence

Goal Verifier NN

    Trajectory in the 12D Camera Space Traversed   
   during an Inverse Synthesis Procedure

    Predicted Intermediate Camera Configurations

The basket

The basket

Initial configuration of the first-
person camera on the player

R12 ! R3

R12 ! R3
EgoCam CNN

Figure 59: Our model takes a single first-person image as input and outputs an egocentric
basketball motion sequence in the form of a 12D camera configuration trajectory, encoding
a player’s 3D location and 3D head orientation throughout the sequence. First, we feed
the first-person image through our proposed future CNN to predict an initial sequence of
future 12D camera configurations. Then, we use our proposed inverse synthesis procedure
to synthesize a refined camera configuration sequence that matches the configurations pre-
dicted by the future CNN, while also maximizing the output of the goal verifier network.
The goal verifier network is a fully-connected network trained to verify that a given 12D
camera configuration is consistent with the final goals of real players. Finally, by follow-
ing the trajectory resulting from the refined camera configuration sequence, we obtain the
complete 12D motion sequence.

12D configurations for any first-person image.

Our EgoCam CNN produces similar outputs to the actual SfM algorithm. We also report

that we tried retrieving missing 12D configurations using a nearest neighbor algorithm, but

observed that our EgoCam CNN produced better results (2.54 vs. 1.97 L2 error in the

normalized 12D space).

4.4.2. Future CNN

Given a first person image xi from the beginning of a sequence, the future CNN encodes it

into multiple configurations φ(xi) ∈ Rk×12, which represent intermediate states that capture

how real players move during a one-on-one game. Here, k is a parameter that controls how

many intermediate configurations we want to generate. Our future CNN is implemented

using a multi-path ResNet-101 architecture, meaning that after the final convolutional pool5
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layer, the network splits itself into k branches, each denoted as φj(xi) for j = 1 . . . k. Each

branch in the future CNN is responsible for generating its own intermediate state.

To train the future CNN, for every real basketball sequence, we first assign to each camera

configuration yi of the sequence a value s ∈ [0, 1], indicating its order in the sequence. Let yi

be the ith configuration in a sequence of length M . Then, we can compute s as s(i) = i/M .

The jth branch in the future CNN is then optimized to predict camera configurations, with

s values falling in the interval [ j−1
k , jk ], where k is the number of branches in the future

CNN. For instance, if k = 4, then the second branch in the network will be optimized to

predict camera configurations with values s ∈ [0.25, 0.5]. This constraint ensures that each

branch generates an intermediate state associated with a specific time-point in a sequence,

thus generating configurations covering the entire sequence (albeit with wider gaps). We

also point out that all input images xi that are used to train the future CNN have values

s ∈ [0, 0.1] to make sure that the future CNN generates accurate intermediate configurations

from a first-person image at the beginning of a sequence. The future CNN is then trained

using the following loss function:

Lfut =

k∑

j=1

||φj(xi)− ŷi′(xi′)||22 (4.2)

where φj denotes the output from branch j of a future CNN, and ŷi′ is the output of an

EgoCam CNN for an input image xi′ . The constraints on xi and xi′ that we discussed above

are expressed as: s(i) ∈ [0, 0.1] and s(i′) ∈ [ j−1
k , jk ].

We note that our training setup requires basketball sequences that are trimmed. In this

work, we trim the sequences manually: the sequence starts when a player begins his offensive

position and ends when a shot or a turnover occurs. We believe that we could also trim

sequences automatically by using a player’s head location and pose to assess whether a

player is attacking or defending.

186



4.4.3. Goal Verifier Network

The goal verifier network aims to verify whether a given configuration aligns with the final

goals of real players. The goal verifier takes a 12D camera configuration ŷi ∈ R1×12 as

input, then outputs a real value ψ(ŷi) ∈ R1×1 in the interval [0, 1], indicating how well a

given camera configuration captures the final goals of real players.

The key question is: how do we infer the final goals of real basketball players without asking

them directly? To do this, we assume that the last few images in a given sequence represent

the final goals of that player. Of course, such reasoning may not always be correct because,

in some sequences, players may fail to accomplish their goals. However, we conjecture

that when looking at many sequences of real players, the pattern of goals should be quite

distinctive. In other words, if we use the right learning strategy, the network should be able

to learn configurations that are typically associated with the final goals of real players.

We propose to employ discriminative training of the goal verifier, which allows us to ef-

fectively address the issues of noisy labels in our setting. To create these noisy labels, we

assign a value g(ŷi) = 1 to all configurations with s(i) > 0.92 (configurations that appear at

the end of sequences) and a value of zero to all other configurations. Such a scheme allows

us to highlight the configurations at the end of sequences, which are more likely to represent

the goals of the players. Subsequently, the goal verifier, which is a two-layer network, takes

a 12D camera configuration as its input and is trained using a cross-entropy loss:

Lg = −
[
g(ŷi) logψ(ŷi) + (1− g(ŷi)) log (1− ψ(ŷi))

]
(4.3)

where ŷi ∈ R1×12 is the 12D camera configuration output from an EgoCam CNN (associated

with an image xi), and ψ(ŷi) ∈ R1×1 is the output of a goal verifier network that indicates

whether a given 12D camera configuration accurately represents the final goals of real
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players.

4.4.4. Motion Planning using Inverse Synthesis

We can now put all the pieces of our model together and show how to generate an egocentric

basketball motion sequence that captures the goals of real players. Our approach is partially

inspired by the idea of synthesizing the preferred stimuli in a CNN [242, 243, 244], which

has been mostly used to visualize activations in the CNNs [242, 243, 244]. In this work,

we propose the concept of inverse synthesis for generating a realistic basketball motion

sequence.

Consider the two problems that we were solving previously: (1) encoding an egocentric

basketball motion sequence via a set of intermediate 12D configurations and (2) verifying

that a given 12D camera configuration aligns with the final goals of real players. In the

previous sections, we solved these two problems using the future CNN and the goal verifier

network, respectively. However, we now want to invert these two problems: given (1) a set

of intermediate states predicted by the future CNN and (2) a trained goal verifier network,

our goal is to generate a smooth basketball motion sequence in the form of 12D camera

configurations.

To do this, we frame the inverse synthesis problem as a search problem in the 12D cam-

era space, where our goal is to find a 12D configuration h that (1) matches intermediate

states generated by the future CNN φj(xi) and (2) maximizes the output of a goal verifier

network ψ(h). We formulate this problem as a minimization problem in the 12D camera

configuration space:

h∗ = arg min
h

[
||φj(xi)− h||22 − log (ψ(h))

]
(4.4)

Here, h is a 12D camera configuration vector that we initialize to ŷi(xi), which is the

188



camera configuration of the very first image in the sequence (i.e., s(i) = 0, or, equivalently,

i = 0). The first term in the equation encourages h to reach configurations predicted by the

future CNN, whereas the second term encourages h to take values that would maximize the

output of the goal verifier network. We minimize this function by computing the appropriate

gradients and then running gradient descent in the 12D camera configuration space for N

iterations. To select the branch from a future CNN whose output φj we are trying to match,

we compute j = floor(c/(N/k)), where j is the index of a selected branch, c is the iteration

counter, and k is the number of branches in the future CNN.

During the inverse synthesis procedure, we fix the parameters of all three networks and

only adjust h. Since the inverse synthesis is performed in the 12D camera configuration

space, at every step we are generating a new 12D camera configuration. Thus, at the end,

we can generate a final camera configuration sequence by simply following the 12D camera

trajectory traversed during the optimization.

4.4.5. Implementation Details

For all of our experiments, we used the Caffe library [16]. Both the future and EgoCam

CNNs were based on the ResNet-101 [241] architecture and were trained for 10, 000 iter-

ations, with a learning rate of 10−4, 0.9 momentum, a weight decay of 5 · 10−4, and 20

samples per batch. We designed our future CNN to have 4 distinct branches, which we ex-

perimentally discovered to work well. Each branch consists of a single fully-connected layer

that maps pool5 features to a 12D camera configuration feature. Next, we designed the goal

verifier network as a two layer fully connected network with 100 neurons in the first-hidden

layer and a single output neuron at the end. To generate final basketball motion sequences,

we ran our inverse synthesis procedure for 6, 000 iterations with a step size of 0.001.

4.5. Egocentric One-on-One Basketball Dataset

We present a first-person basketball dataset consisting of 988 sequences from one-on-one

basketball games between nine college-level players. The videos are recorded in 1280×960
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Figure 60: A figure illustrating the 3D locations of every camera configuration from our
dataset mapped on a 2D court (best viewed in color). The blue points indicate the config-
urations from the beginning of sequences, whereas the yellow points depict configurations
from the end of sequences. The diversity of real sequences in our dataset allows us to build
a powerful basketball motion model.

resolution at 100 fps using GoPro Hero Session cameras, which are mounted on the players’

heads. We extract the videos at 5 frames per second. We then randomly split all the

sequences into training and testing sets, consisting of 815 and 173 sequences, respectively.

Each sequence is about 25 frames long.

To obtain better insight about the distribution of our data, we map the 3D locations of

all camera configurations from real sequences onto the 2D court and visualize the results

in Figure 60. The blue points indicate the configurations at the beginning of sequences,

whereas the yellow points represent configurations at the end of sequences. Based on this

figure, we note that our dataset contains a wide array of different beginning and ending

configurations, enabling us to learn a diverse basketball motion model.

We chose a one-on-one setting because it is more data-efficient for studying the decision-

making process of basketball players (compared to the five-on-five setting). For example,

first-person videos of five-on-five games capture numerous instances when players do not

have the ball and are idly waiting for their teammate with the ball to perform some action.

On the contrary, in our one-on-one dataset, players continuously make decisions and take
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actions to reach their goals, as there are no teammates to rely on.

4.6. Experimental Results

To the best of our knowledge, we are the first to generate egocentric basketball motion

sequences in the 12D camera configuration space from a single first-person image. As

a result, there are no prior established baselines for this task. To validate our method’s

effectiveness, we compare it with other popular deep learning techniques such as RNNs [221],

LSTMs [222], and GANs [223]. We construct these baselines using the ResNet-101 [241]

architecture. Each baseline takes a single first-person image as input and is then trained

to generate 10 future configurations. The RNN and LSTM baselines are optimized with

an L2 loss in the 12D camera configuration space, whereas the GAN baseline has the same

architecture as RNN, but is trained to fool the discriminator by producing realistic 12D

future camera configurations. To maximize the amount of available training data, the

training data are constructed by using every feasible training image as a starting point.

During testing, each baseline predicts camera configurations recurrently until we observe

no significant change in the prediction or until the predicted sequence length exceeds the

length of a real sequence. We also include a nearest neighbor baseline, which operates in

the 12D camera configuration space.

The goal of our evaluations is to verify that the generated sequences (1) are realistic and

(2) that they capture the goals of real players. To do this, we propose several evaluation

schemes, which we describe in the next few subsections.

4.6.1. Quantitative Results

Predicting Future Motion. To verify that our generated sequences are realistic, we

examine whether our method can predict a player’s future motion. In the context of such

evaluation, the sequences that we want to compare typically have different lengths, which

renders standard Euclidean and L1 distance metrics unusable. Thus, we use the Hausdorff

distance [245], which is commonly used for sequential data comparisons. To implement this
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Evaluation Tasks
PFM ↓ CG ↑

GAN [223] 62.31 0.329
LSTM [222] 5.66 0.678
RNN [221] 5.82 0.612

NN 5.36 -
Ours w/o GV 4.91 0.671
Ours w/ GV 4.93 0.776

Table 31: We assess each method on two tasks: predicting a player’s future motion (PFM),
and capturing the goals of real players (CG). The ↑ and ↓ symbols next to a task indicate
whether a higher or lower number is better, respectively. Our method outperforms the
baselines for both tasks, suggesting that we can generate sequences that (1) are more similar
to a true player’s motion and (2) capture the goals of real players more accurately. We also
note that removing a goal verifier (“Ours w/o GV”) leads to a sharp decrease in performance,
according to the CG evaluation metric.

idea, we first use our EgoCam CNN to extract camera configurations from every frame in

every real sequence in the testing dataset. Then, as our evaluation metric, we compute a

distance d = D(y, ŷ), where ŷ is generated using the first image from a real sequence y, and

D is a Hausdorff distance operator.

In Column 2 of Table 31, we record the average d over all testing sequences for every method

(i.e., the lower the distance the better). We observe that our method outperforms all the

other baselines, suggesting that we can use it for future behavior prediction.

Capturing the Goals of Real Players. Earlier, we assumed that the last few frames

in real sequences approximate the goals of the players. To examine how well our method

captures these goals, we first select the last generated configuration ŷM in the sequence of

length M . Then, we use nearest neighbor search to retrieve a real configuration ynn that

is most similar to ŷM . Finally, we look up where in the real sequence ynn appears. For

instance, if ynn was the ith configuration in a real sequence of length N , then we assign

our current prediction a value of v = i/N . Intuitively, if the last generated configuration is

similar to the last real configuration, we conclude that our method was able to capture the

goals of real players.

In Column 3 of Table 31, we record the average v values over all testing sequences for
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every method (i.e., the higher the better). These results suggest that, out of all baselines,

our method is the most accurate at capturing the goals of real players. Also, note that,

if we remove the goal verifier, these results drop significantly, indicating the goal verifier’s

importance to our system. We conjecture that this happens because the future CNN is

trained using a non-discriminative L2 loss, while the goal verifier network is trained to

discriminate which configurations represent the final goals of the players. Thus, similar to

GANs [223], due to the discriminative training, the goal verifier may be more useful for

generating the configurations that capture the final goals of the players. We also note that

the future CNN is still essential, as using a goal verifier network alone produces short and

unrealistic sequences.

4.6.2. Qualitative Results

Future CNN Visualization. To better understand how the future CNN works, we visu-

alize its outputs in Figure 62. To do this, we take the 12D camera configurations generated

by the future CNN, transform them into 3D space, and then visualize them in a sparsely

reconstructed 3D scene. Note that the future CNN produces a wide array of different

configurations, allowing us to generate diverse sequences.

Furthermore, in Columns 2 and 3 of Figure 61, we visualize the activations of a future CNN

from the res4a and res5c layers, respectively. We observe that, in the res4a layer, the CNN

focuses on different parts of a defender’s body, which makes intuitive sense, as basketball

players often use such information to decide their next action. Furthermore, we also observe

that, in the res5c layer, the future CNN learns to recognize open spaces in the court that

could be used by a player to navigate the court and get away from a defender.

Visualizing Generated Motion Trajectories. In the last column of Figure 61, we also

visualize sequences generated by our inverse synthesis procedure (by projecting them onto

a 2D court). Even though it is difficult to validate whether our generated motion sequences

represent optimal motion pattern, they do seem reasonable. In all visualized instances,
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Egocentric Input Generated Trajectory

Start

End

Start

End

Start

End

Start

End

Start

End
res5cres4a

Figure 61: A figure illustrating some of our qualitative results. In the first column, we depict
an egocentric input image. In the second and third columns, we visualize the activations
of a Future CNN from the res4a and res5c layers. Finally, in the last column, we present
our generated 2D motion trajectories. Based on the activations of the Future CNN, we
conclude that our CNN recognizes visual cues in an egocentric image, which may be helpful
for deciding how to effectively navigate the court and reach the basket, or how to get away
from a defender. Furthermore, our generated motion trajectories seem realistic, as they
avoid colliding with the defender and typically end near the basket, which reflects how
most real players would move.
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Input Future CNN Output Input Future CNN Output

The basket The basket

Figure 62: An illustration of the camera configurations generated by our future CNN,
which we visualize in a sparsely reconstructed 3D space (best viewed in color). The red
camera depicts the initial camera configuration state, while the blue, magenta, green, and
cyan cameras correspond to the outputs from the 1st, 2nd, 3rd, and 4th branches of our
future CNN, respectively. We note that our future CNN is able to produce a diverse set of
intermediate configurations, which allows us to generate a wide array of different sequences
at a later step in our model.

our model produces motion sequences that avoid colliding with the defender. Furthermore,

most of our generated sequences end around the basket, which reflects what a real player

would likely try to do.

Retrieved Image Sequences. To show what our generated sequences look like in the

form of first-person images, we use nearest neighbor search in the 12D camera space to

retrieve the most similar first-person images from the training data. We then sample 5

first-person images from the sequence and visualize them in Figure 63, along with a real

sequence. The similarity between our generated sequences and the real sequences suggests

that our model accurately captures how real players move during a basketball game.

Additionally, to qualitatively validate the need for a goal verifier, in Figure 64, we visualize

the very last images in our generated sequences, when the goal verifier is not used (w/o Goal

Verifier) and when it is used (w/ Goal Verifier). Note that when we remove the goal verifier

from our system, the very last images in our generated sequences look less realistic. That

is, they focus on the walls or floor of the basketball court, which is probably not something

that real players would do. In contrast, adding a goal verifier to our system makes these

images focus on the basket, which makes much more sense, since most players finish their

sequences when they are looking directly at the basket. Thus, the goal verifier allows us to
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Figure 63: A visual illustration of our generated basketball sequences, in the form of first-
person images retrieved using nearest neighbor search. We observe that our generated
sequence is similar to a real sequence, suggesting that our model could be used for applica-
tions such as future behavior prediction.

generate more realistic sequences.

Video Results. Due to space constraints, we cannot include all of our qualitative results

in an image format. Furthermore, because images are static, they cannot capture the full

content of our generated sequences. Thus, we include more video results in the following

link: https://www.youtube.com/watch?v=wRRRl4QsUQg.

4.7. Conclusions

In this work, we introduced a model that uses a single first-person image to generate an

egocentric basketball motion sequence in the form of a 12D camera configuration trajectory.

We showed that our model generates realistic sequences that capture the goals of real

players. Furthermore, we demonstrated that our model can be learned directly from the

first-person video data, which is beneficial as obtaining labeled behavioral data is costly.

Our model could be used for a wide array of behavioral applications, such as future behavior

prediction or player development, for which we could build models using the data of expert

players and then transfer their behavioral patterns to less-skilled players. Furthermore, even

though we apply our model on a basketball activity, we do not inject any basketball-specific

domain knowledge into the model. Thus, we believe that our model is general enough to

also be applied to other activities, which we will explore in our future work. In the future,
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w/ Goal Verifierw/o Goal Verifier w/ Goal Verifierw/o Goal Verifier

Figure 64: A figure comparing the final images of our generated sequences in two settings:
without and with using the goal verifier network. We retrieve these images via nearest
neighbor search. Note that the images produced with a goal verifier “focus” on the basket,
just as real players would, thus capturing the goals of real players more accurately.

we would also like to experiment with more complex configurations that would allow us to

represent even more complicated behavioral patterns. Finally, we believe that the concept

behind our model could be used for various robotic applications, where our model could

provide behavioral guidelines for robots.
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