22,142 research outputs found

    Reconstruction of a low-rank matrix in the presence of Gaussian noise

    Get PDF
    This paper addresses the problem of reconstructing a low-rank signal matrix observed with additive Gaussian noise. We first establish that, under mild assumptions, one can restrict attention to orthogonally equivariant reconstruction methods, which act only on the singular values of the observed matrix and do not affect its singular vectors. Using recent results in random matrix theory, we then propose a new reconstruction method that aims to reverse the effect of the noise on the singular value decomposition of the signal matrix. In conjunction with the proposed reconstruction method we also introduce a Kolmogorov–Smirnov based estimator of the noise variance

    Sparsity Order Estimation from a Single Compressed Observation Vector

    Full text link
    We investigate the problem of estimating the unknown degree of sparsity from compressive measurements without the need to carry out a sparse recovery step. While the sparsity order can be directly inferred from the effective rank of the observation matrix in the multiple snapshot case, this appears to be impossible in the more challenging single snapshot case. We show that specially designed measurement matrices allow to rearrange the measurement vector into a matrix such that its effective rank coincides with the effective sparsity order. In fact, we prove that matrices which are composed of a Khatri-Rao product of smaller matrices generate measurements that allow to infer the sparsity order. Moreover, if some samples are used more than once, one of the matrices needs to be Vandermonde. These structural constraints reduce the degrees of freedom in choosing the measurement matrix which may incur in a degradation in the achievable coherence. We thus also address suitable choices of the measurement matrices. In particular, we analyze Khatri-Rao and Vandermonde matrices in terms of their coherence and provide a new design for Vandermonde matrices that achieves a low coherence

    Algorithms for Approximate Subtropical Matrix Factorization

    Get PDF
    Matrix factorization methods are important tools in data mining and analysis. They can be used for many tasks, ranging from dimensionality reduction to visualization. In this paper we concentrate on the use of matrix factorizations for finding patterns from the data. Rather than using the standard algebra -- and the summation of the rank-1 components to build the approximation of the original matrix -- we use the subtropical algebra, which is an algebra over the nonnegative real values with the summation replaced by the maximum operator. Subtropical matrix factorizations allow "winner-takes-it-all" interpretations of the rank-1 components, revealing different structure than the normal (nonnegative) factorizations. We study the complexity and sparsity of the factorizations, and present a framework for finding low-rank subtropical factorizations. We present two specific algorithms, called Capricorn and Cancer, that are part of our framework. They can be used with data that has been corrupted with different types of noise, and with different error metrics, including the sum-of-absolute differences, Frobenius norm, and Jensen--Shannon divergence. Our experiments show that the algorithms perform well on data that has subtropical structure, and that they can find factorizations that are both sparse and easy to interpret.Comment: 40 pages, 9 figures. For the associated source code, see http://people.mpi-inf.mpg.de/~pmiettin/tropical

    Phase Retrieval From Binary Measurements

    Full text link
    We consider the problem of signal reconstruction from quadratic measurements that are encoded as +1 or -1 depending on whether they exceed a predetermined positive threshold or not. Binary measurements are fast to acquire and inexpensive in terms of hardware. We formulate the problem of signal reconstruction using a consistency criterion, wherein one seeks to find a signal that is in agreement with the measurements. To enforce consistency, we construct a convex cost using a one-sided quadratic penalty and minimize it using an iterative accelerated projected gradient-descent (APGD) technique. The PGD scheme reduces the cost function in each iteration, whereas incorporating momentum into PGD, notwithstanding the lack of such a descent property, exhibits faster convergence than PGD empirically. We refer to the resulting algorithm as binary phase retrieval (BPR). Considering additive white noise contamination prior to quantization, we also derive the Cramer-Rao Bound (CRB) for the binary encoding model. Experimental results demonstrate that the BPR algorithm yields a signal-to- reconstruction error ratio (SRER) of approximately 25 dB in the absence of noise. In the presence of noise prior to quantization, the SRER is within 2 to 3 dB of the CRB
    • …
    corecore