7 research outputs found

    Sparsity oracle inequalities for the Lasso

    Full text link
    This paper studies oracle properties of β„“1\ell_1-penalized least squares in nonparametric regression setting with random design. We show that the penalized least squares estimator satisfies sparsity oracle inequalities, i.e., bounds in terms of the number of non-zero components of the oracle vector. The results are valid even when the dimension of the model is (much) larger than the sample size and the regression matrix is not positive definite. They can be applied to high-dimensional linear regression, to nonparametric adaptive regression estimation and to the problem of aggregation of arbitrary estimators.Comment: Published at http://dx.doi.org/10.1214/07-EJS008 in the Electronic Journal of Statistics (http://www.i-journals.org/ejs/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Fast Exact Bayesian Inference for Sparse Signals in the Normal Sequence Model

    Full text link
    We consider exact algorithms for Bayesian inference with model selection priors (including spike-and-slab priors) in the sparse normal sequence model. Because the best existing exact algorithm becomes numerically unstable for sample sizes over n=500, there has been much attention for alternative approaches like approximate algorithms (Gibbs sampling, variational Bayes, etc.), shrinkage priors (e.g. the Horseshoe prior and the Spike-and-Slab LASSO) or empirical Bayesian methods. However, by introducing algorithmic ideas from online sequential prediction, we show that exact calculations are feasible for much larger sample sizes: for general model selection priors we reach n=25000, and for certain spike-and-slab priors we can easily reach n=100000. We further prove a de Finetti-like result for finite sample sizes that characterizes exactly which model selection priors can be expressed as spike-and-slab priors. The computational speed and numerical accuracy of the proposed methods are demonstrated in experiments on simulated data, on a differential gene expression data set, and to compare the effect of multiple hyper-parameter settings in the beta-binomial prior. In our experimental evaluation we compute guaranteed bounds on the numerical accuracy of all new algorithms, which shows that the proposed methods are numerically reliable whereas an alternative based on long division is not

    SPADES and mixture models

    Full text link
    This paper studies sparse density estimation via β„“1\ell_1 penalization (SPADES). We focus on estimation in high-dimensional mixture models and nonparametric adaptive density estimation. We show, respectively, that SPADES can recover, with high probability, the unknown components of a mixture of probability densities and that it yields minimax adaptive density estimates. These results are based on a general sparsity oracle inequality that the SPADES estimates satisfy. We offer a data driven method for the choice of the tuning parameter used in the construction of SPADES. The method uses the generalized bisection method first introduced in \citebb09. The suggested procedure bypasses the need for a grid search and offers substantial computational savings. We complement our theoretical results with a simulation study that employs this method for approximations of one and two-dimensional densities with mixtures. The numerical results strongly support our theoretical findings.Comment: Published in at http://dx.doi.org/10.1214/09-AOS790 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Needles and Straw in a Haystack: Posterior concentration for possibly sparse sequences

    Get PDF
    We consider full Bayesian inference in the multivariate normal mean model in the situation that the mean vector is sparse. The prior distribution on the vector of means is constructed hierarchically by first choosing a collection of nonzero means and next a prior on the nonzero values. We consider the posterior distribution in the frequentist set-up that the observations are generated according to a fixed mean vector, and are interested in the posterior distribution of the number of nonzero components and the contraction of the posterior distribution to the true mean vector. We find various combinations of priors on the number of nonzero coefficients and on these coefficients that give desirable performance. We also find priors that give suboptimal convergence, for instance, Gaussian priors on the nonzero coefficients. We illustrate the results by simulations.Comment: Published in at http://dx.doi.org/10.1214/12-AOS1029 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Spike and slab empirical Bayes sparse credible sets

    Full text link
    In the sparse normal means model, coverage of adaptive Bayesian posterior credible sets associated to spike and slab prior distributions is considered. The key sparsity hyperparameter is calibrated via marginal maximum likelihood empirical Bayes. First, adaptive posterior contraction rates are derived with respect to dqd_q--type--distances for q≀2q\leq 2. Next, under a type of so-called excessive-bias conditions, credible sets are constructed that have coverage of the true parameter at prescribed 1βˆ’Ξ±1-\alpha confidence level and at the same time are of optimal diameter. We also prove that the previous conditions cannot be significantly weakened from the minimax perspective.Comment: 45 page
    corecore