10,983 research outputs found

    Application of advanced fluorescence microscopy and spectroscopy in live-cell imaging

    Get PDF
    Since its inception, fluorescence microscopy has been a key source of discoveries in cell biology. Advancements in fluorophores, labeling techniques and instrumentation have made fluorescence microscopy a versatile quantitative tool for studying dynamic processes and interactions both in vitro and in live-cells. In this thesis, I apply quantitative fluorescence microscopy techniques in live-cell environments to investigate several biological processes. To study Gag processing in HIV-1 particles, fluorescence lifetime imaging microscopy and single particle tracking are combined to follow nascent HIV-1 virus particles during assembly and release on the plasma membrane of living cells. Proteolytic release of eCFP embedded in the Gag lattice of immature HIV-1 virus particles results in a characteristic increase in its fluorescence lifetime. Gag processing and rearrangement can be detected in individual virus particles using this approach. In another project, a robust method for quantifying Förster resonance energy transfer in live-cells is developed to allow direct comparison of live-cell FRET experiments between laboratories. Finally, I apply image fluctuation spectroscopy to study protein behavior in a variety of cellular environments. Image cross-correlation spectroscopy is used to study the oligomerization of CXCR4, a G-protein coupled receptor on the plasma membrane. With raster image correlation spectroscopy, I measure the diffusion of histones in the nucleoplasm and heterochromatin domains of the nuclei of early mouse embryos. The lower diffusion coefficient of histones in the heterochromatin domain supports the conclusion that heterochromatin forms a liquid phase-separated domain. The wide range of topics covered in this thesis demonstrate that fluorescence microscopy is more than just an imaging tool but also a powerful instrument for the quantification and elucidation of dynamic cellular processes

    Mapping Super-Relaxed States of Myosin Heads in Sarcomeres using Oblique Angle Fluorescent Microscopy

    Get PDF
    We have utilised modern methods of super-resolution fluorescent microscopy to spatially map fluorescently labelled ATP molecules in relaxed rabbit psoas skeletal muscles. For our imaging process, we have labelled ATP molecules with Rhodamine and Z-lines with Alexa488. Data from imaging these fluorophores have been collected using oblique angle fluorescent microscopy and further analysed to map super relaxed states (SRX) of myosin heads on the thick filament. Our experiments have concluded that most SRX of myosin heads were found in the C-zone of the thick filament, while other zones of thick filament had smaller populations of SRX. Further introduction of mavacamten (MAVA) to our imaging system has revealed an increase in SRX in both D and P zones, while the C zone population of SRX had remained constant. Further experiments must be conducted to establish a clear pattern and further proof our findings

    Cortical glutamatergic projection neuron types contribute to distinct functional subnetworks

    Get PDF
    The cellular basis of cerebral cortex functional architecture remains not well understood. A major challenge is to monitor and decipher neural network dynamics across broad cortical areas yet with projection neuron (PN)-type resolution in real time during behavior. Combining genetic targeting and wide-field imaging, we monitored activity dynamics of subcortical-projecting (PTFezf2) and intratelencephalic-projecting (ITPlxnD1) types across dorsal cortex of mice during different brain states and behaviors. ITPlxnD1 and PTFezf2 neurons showed distinct activation patterns during wakeful resting, spontaneous movements, and upon sensory stimulation. Distinct ITPlxnD1 and PTFezf2 subnetworks were dynamically tuned to different sensorimotor components of a naturalistic feeding behavior, and optogenetic inhibition of subnetwork nodes disrupted specific components of this behavior. Lastly, ITPlxnD1 and PTFezf2 projection patterns are consistent with their subnetwork activation patterns. Our results show that, in addition to the concept of columnar organization, dynamic areal and PN type-specific subnetworks are a key feature of cortical functional architecture linking microcircuit components with global brain networks

    Novel endosomolytic compounds enable highly potent delivery of antisense oligonucleotides

    Get PDF
    The therapeutic and research potentials of oligonucleotides (ONs) have been hampered in part by their inability to effectively escape endosomal compartments to reach their cytosolic and nuclear targets. Splice-switching ONs (SSOs) can be used with endosomolytic small molecule compounds to increase functional delivery. So far, development of these compounds has been hindered by a lack of high-resolution methods that can correlate SSO trafficking with SSO activity. Here we present in-depth characterization of two novel endosomolytic compounds by using a combination of microscopic and functional assays with high spatiotemporal resolution. This system allows the visualization of SSO trafficking, evaluation of endosomal membrane rupture, and quantitates SSO functional activity on a protein level in the presence of endosomolytic compounds. We confirm that the leakage of SSO into the cytosol occurs in parallel with the physical engorgement of LAMP1-positive late endosomes and lysosomes. We conclude that the new compounds interfere with SSO trafficking to the LAMP1-positive endosomal compartments while inducing endosomal membrane rupture and concurrent ON escape into the cytosol. The efficacy of these compounds advocates their use as novel, potent, and quick-acting transfection reagents for antisense ONs

    Antibody Targeting of HIV-1 Env: A Structural Perspective

    Get PDF
    A key component of contemporary efforts toward a human immunodeficiency virus 1 (HIV-1) vaccine is the use of structural biology to understand the structural characteristics of antibodies elicited both from human patients and animals immunized with engineered 'immunogens,' or early vaccine candidates. This thesis will report on projects characterizing both types of antibodies against HIV-1. Chapter 1 will introduce relevant topics, including the reasons HIV-1 is particularly capable of evading the immune system in natural infection and after vaccination, the 20+ year history of unsuccessful HIV-1 vaccine large-scale efficacy trials, an introduction to broadly neutralizing antibodies (bNAbs), and a review of common strategies utilized in HIV-1 immunogen design today. Chapter 2 describes the isolation, high-resolution structural characterization, and in vitro resistance profile of a new bNAb, 1-18, that is both very broad and potent, as well as able to restrict HIV-1 escape in vivo. Chapter 3 reports the results of an epitope-focusing immunogen design and immunization experiment carried out in wild type mice, rabbits, and non-human primates where it was shown that B cells targeting the desired epitope were expanded after a single prime immunization with immunogen RC1 or a variant, RC1-4fill. Chapter 4 describes Ab1245, an off-target non-neutralizing monoclonal antibody isolated in a macaque that had been immunized with a series of sequential immunogens after the prime immunization reported in Chapter 3. The antibody structure describes a specific type of distracting response as it binds in a way that causes a large structural change in Env, resulting in the destruction of the neutralizing fusion peptide epitope. Chapter 5 is adapted from a review about how antibodies differentially recognize the viruses HIV-1, SARS-CoV-2, and Zika virus. This review serves as an introduction to the virus SARS-CoV-2, which is the topic of the final chapter, Chapter 6. In this chapter, structures of many neutralizing antibodies isolated from SARS-CoV-2 patients were used to define potentially therapeutic classes of neutralizing receptor-binding domain (RBD) antibodies based on their epitopes and binding profiles

    Optical coherence tomography methods using 2-D detector arrays

    Get PDF
    Optical coherence tomography (OCT) is a non-invasive, non-contact optical technique that allows cross-section imaging of biological tissues with high spatial resolution, high sensitivity and high dynamic range. Standard OCT uses a focused beam to illuminate a point on the target and detects the signal using a single photodetector. To acquire transverse information, transversal scanning of the illumination point is required. Alternatively, multiple OCT channels can be operated in parallel simultaneously; parallel OCT signals are recorded by a two-dimensional (2D) detector array. This approach is known as Parallel-detection OCT. In this thesis, methods, experiments and results using three parallel OCT techniques, including full -field (time-domain) OCT (FF-OCT), full-field swept-source OCT (FF-SS-OCT) and line-field Fourier-domain OCT (LF-FD-OCT), are presented. Several 2D digital cameras of different formats have been used and evaluated in the experiments of different methods. With the LF-FD-OCT method, photography equipment, such as flashtubes and commercial DSLR cameras have been equipped and tested for OCT imaging. The techniques used in FF-OCT and FF-SS-OCT are employed in a novel wavefront sensing technique, which combines OCT methods with a Shack-Hartmann wavefront sensor (SH-WFS). This combination technique is demonstrated capable of measuring depth-resolved wavefront aberrations, which has the potential to extend the applications of SH-WFS in wavefront-guided biomedical imaging techniques

    Investigating PAX6 and SOX2 dynamic interactions at the single molecule level in live cells

    Get PDF
    The abundance of transcription factor (TF) molecules in the nuclei of eukaryotic cells are in the range of thousands. However, the functional binding sites of most TFs lie in the range of hundreds. This suggests that there is a surplus of the number of molecules for many TFs, relative to their binding sites at any given time. Nevertheless, precise TF levels are instrumental for normal development and maintenance, with haploinsufficiency (namely lowering the dosage of a TF by half) being a hallmark of many TF-related human developmental disorders. Qualitative methods assessing TF binding such as chromatin immunoprecipitation, provide static information, from fixed cell populations and so fail to provide insight into TF dynamic behaviour. Live-cell imaging methodologies such as Fluorescence Correlation Spectroscopy (FCS) offer the ability to measure kinetics of binding to chromatin, protein-protein interactions, absolute concentrations of molecules and the underlying cell-to-cell variability. SOX2 and PAX6 TFs exhibit haploinsufficiency in humans. Heterozygous point mutations, deletions or insertions in these genes can lead to a plethora of abnormal ocular developmental disorders (e.g. coloboma, aniridia, microphthalmia, anopthalmia). SOX2 encodes a high-mobility group (HMG) domain-containing TF, essential for maintaining self-renewal of embryonic stem cells and is expressed in proliferating central nervous system (CNS) progenitors. PAX6 contains two DNA binding domains; a PAIRED domain (PD) and a homeodomain (HD). Both DNA binding domains present in PAX6 (PD and HD) can function either jointly, or separately, to regulate a plethora of genes implicated in the development and maintenance of the CNS, the eye and the pancreas. Despite existing genetic and phenotypic evidence, it remains unclear how PAX6 and SOX2 influence each other at the molecular level and how sensitive their stoichiometry is during ocular development. In this thesis I investigated the dynamic interplay between PAX6/SOX2 and chromatin in live cells, at the molecular level. I compared wild-type protein function with pathogenic missense variants using advanced fluorescence microscopy techniques and assessed how these mutations quantitatively and qualitatively affected molecular behaviour. My results showed that both SOX2 and PAX6 pathogenic missense mutants display differential subnuclear localisation, as well as altered protein-protein and protein-chromatin interactions, linking molecular diffusion to pathogenic phenotype in humans. More importantly, I identified a novel role of SOX2 in stabilising PAX6- chromatin complexes in live cells, providing further insight into the complex and dynamic relation of PAX6 and SOX2 in ocular tissue specification, maintenance and development

    Untrained, physics-informed neural networks for structured illumination microscopy

    Full text link
    In recent years there has been great interest in using deep neural networks (DNN) for super-resolution image reconstruction including for structured illumination microscopy (SIM). While these methods have shown very promising results, they all rely on data-driven, supervised training strategies that need a large number of ground truth images, which is experimentally difficult to realize. For SIM imaging, there exists a need for a flexible, general, and open-source reconstruction method that can be readily adapted to different forms of structured illumination. We demonstrate that we can combine a deep neural network with the forward model of the structured illumination process to reconstruct sub-diffraction images without training data. The resulting physics-informed neural network (PINN) can be optimized on a single set of diffraction limited sub-images and thus doesn't require any training set. We show with simulated and experimental data that this PINN can be applied to a wide variety of SIM methods by simply changing the known illumination patterns used in the loss function and can achieve resolution improvements that match well with theoretical expectations.Comment: Preprint for journal submission. 21 Pages. 5 main text figures. 6 supplementary figure

    Identification of Hindbrain Neural Substrates for Motor Initiation in the hatchling Xenopus laevis Tadpole

    Get PDF
    Animal survival profoundly depends on the ability to detect stimuli in the environment, process them and respond accordingly. In this respect, motor responses to a sensory stimulation evolved into a variety of coordinated movements, which involve the control of brain centres over spinal locomotor circuits. The hatchling Xenopus tadpole, even in its embryonic stage, is able to detect external sensory information and to swim away if the stimulus is considered noxious. To do so, the tadpole relies on well-known ascending sensory pathway, which carries the sensory information to the brain. When the stimulus is strong enough, descending interneurons are activated, leading to the excitation of spinal CPG neurons, which causes the undulatory movement of swimming. However, the activation of descending interneurons that marks the initiation of motor response appears after a long delay from the sensory stimulation. Furthermore, the long-latency response is variable in time, as observed in the slow-summating excitation measured in descending interneurons. These two features, i.e. long-latency and variability, cannot be explained by the firing time and pattern of the ascending sensory pathway of the Xenopus tadpole. Therefore, a novel neuronal population has been proposed to lie in the hindbrain of the tadpole, and being able to 'hold' the sensory information, thus accounting for the long and variable delay of swim initiation. In this work, the role of the hindbrain in the maintenance of the long and variable response to trunk skin stimulation is investigated in the Xenopustadpole at developmental stage 37/38. A multifaceted approach has been used to unravel the neuronal mechanisms underlying the delayed motor response, including behavioural experiments, electrophysiology analysis of fictive swimming, hindbrain extracellular recordings and imaging experiments. Two novel neuronal populations have been identified in the tadpole's hindbrain, which exhibit activation patterns compatible with the role of delaying the excitation of the spinal locomotor circuit. Future work on cellular properties and synaptic connections of these newly discovered populations might shed light on the mechanism of descending control active at embryonic stage. Identifying supraspinal neuronal populations in an embryonic organism could aid in understanding mechanisms of descending motor control in more complex vertebrates

    Supercritical Carbon Dioxide Facilitated Collagen Scaffold Production for Tissue Engineering

    Get PDF
    The rise of tissue engineering and regenerative medicine (TERM) is a developing field that focuses on the advancement of alternative therapies for tissue and organ restoration. Collagen scaffold biomaterials play a vital role as a scaffold to promote cell growth and differentiation to promote the repair and regenerate the tissue lesion. The goal of this chapter will be to evaluate the role of supercritical carbon dioxide extraction technology in the production of collagen scaffold biomaterials from various tissues and organs and relate it to the traditional decellularization techniques in the production of collagen biomaterials for TERM. Therefore, we will study the collagen scaffold biomaterials produced using supercritical carbon dioxide extraction technology and their characteristics, such as chemical-physical properties, toxicity, biocompatibility, in vitro and in vivo bioactivity that could affect the interaction with cells and living system, relative to traditional decellularization technique-mediated collagen scaffolds. Furthermore, the chapter will focus on supercritical carbon dioxide extraction technology for the production of collagen scaffolds biomaterial appropriate for TERM
    corecore