2 research outputs found

    Automated Measurement of Pancreatic Fat and Iron Concentration Using Multi-Echo and T1-Weghted MRI Data

    Get PDF
    We present an automated method for estimation of proton density fat fraction and iron concentration in the pancreas using both structural and quantitative imaging data present in the UK Biobank abdominal MRI acquisition protocol. Our method relies on automatic segmentation of 3D T1-weighted MRI data using a convolutional neural network and extracting the location of the multi-echo slice through the segmented volume. We finally estimate the fat and iron content in the pancreas using the extracted segmentation as a mask on the multi-echo data. Our segmentation model achieves a mean dice similarity coefficient of 0.842±0.071 on unseen data, which is comparable to the current state of the art for 3D segmentation of the pancreas. The proposed method is efficient and robust and enables an enhanced analysis of spatial distribution of proton density fat fraction and iron concentration over the current practice of manually placing regions of interest on often ambiguous multi-echo data

    Reconstruction of 3D cardiac MR images from 2D slices using directional total variation

    No full text
    Cardiac MRI allows for the acquisition of high resolution images of the heart. Long acquisition times of MRI make it impractical to image the full heart in 3D at high resolution. As a result, multiple 2D images are commonly acquired with a slice thickness greater than the in-plane resolution. One way of achieving isotropic high-resolution images is to apply post-processing techniques such as super-resolution to produce high resolution images from low resolution input. We use short-axis stacks as well as orthogonal long-axis views in a super-resolution framework, constraining the reconstruction using the contrast independent directional total variation algorithm to produce a high resolution 3D reconstruction with isotropic resolution. The 3D reconstruction retains the contrast of the short-axis stack, but incorporates the edge information from both the short-axis and the long-axis stacks. Results show improved reconstructions, with a segmentation voxel misclassification rate of 3.51% as opposed to 4.27% using linear interpolation
    corecore