59,406 research outputs found

    Modular Decomposition and the Reconstruction Conjecture

    Get PDF
    We prove that a large family of graphs which are decomposable with respect to the modular decomposition can be reconstructed from their collection of vertex-deleted subgraphs.Comment: 9 pages, 2 figure

    Size reconstructibility of graphs

    Get PDF
    The deck of a graph GG is given by the multiset of (unlabelled) subgraphs {Gv:vV(G)}\{G-v:v\in V(G)\}. The subgraphs GvG-v are referred to as the cards of GG. Brown and Fenner recently showed that, for n29n\geq29, the number of edges of a graph GG can be computed from any deck missing 2 cards. We show that, for sufficiently large nn, the number of edges can be computed from any deck missing at most 120n\frac1{20}\sqrt{n} cards.Comment: 15 page

    Reconstruction of Directed Networks from Consensus Dynamics

    Full text link
    This paper addresses the problem of identifying the topology of an unknown, weighted, directed network running a consensus dynamics. We propose a methodology to reconstruct the network topology from the dynamic response when the system is stimulated by a wide-sense stationary noise of unknown power spectral density. The method is based on a node-knockout, or grounding, procedure wherein the grounded node broadcasts zero without being eliminated from the network. In this direction, we measure the empirical cross-power spectral densities of the outputs between every pair of nodes for both grounded and ungrounded consensus to reconstruct the unknown topology of the network. We also establish that in the special cases of undirected or purely unidirectional networks, the reconstruction does not need grounding. Finally, we extend our results to the case of a directed network assuming a general dynamics, and prove that the developed method can detect edges and their direction.Comment: 6 page
    corecore