Size reconstructibility of graphs

Carla Groenland © | Hannah Guggiari © | Alex Scott ©

Mathematical Institute, University of Oxford, Oxford, United Kingdom

Correspondence

Hannah Guggiari, Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom.
Email: guggiari@maths.ox.ac.uk

Funding information

Leverhulme Trust

Abstract

The deck of a graph G is given by the multiset of (unlabeled) subgraphs $\{G-v: v \in V(G)\}$. The subgraphs $G-v$ are referred to as the cards of G. Brown and Fenner recently showed that, for $n \geq 29$, the number of edges of a graph G can be computed from any deck missing 2 cards. We show that, for sufficiently large n, the number of edges can be computed from any deck missing at most $\frac{1}{20} \sqrt{n}$ cards.

KEYWORDS

common cards, graph reconstruction, partial deck, size reconstruction, vertex-deleted subgraphs

1 | INTRODUCTION

Throughout this paper, all graphs are finite and undirected with no loops or multiple edges. The order of a graph is the number of vertices in the graph; the size of a graph refers to the number of edges.

Given a graph G and any vertex $v \in V(G)$, the card $G-v$ is the subgraph of G obtained by removing the vertex v and all edges incident to v. The multiset $\mathcal{D}(G)$ of all unlabeled cards of G is called the deck and has size n.

It is natural to ask whether it is possible for two nonisomorphic graphs to have the same deck. Kelly and Ulam [8,9,15] proposed the following Reconstruction Conjecture.

Conjecture 1.1. For $n>2$, two graphs G and H of order n are isomorphic if and only if $\mathcal{D}(G)=\mathcal{D}(H)$.

[^0]The Reconstruction Conjecture remains open, although it is known to be true for a few classes of graphs (eg, trees [9]). Moreover, almost every graph can be reconstructed [2,11,12]. For more background, see [1,3,4,10,14].

A more general problem is to determine which parameters of a graph can be calculated from its deck. Such parameters are said to be reconstructible. Given a full deck of cards, it is easy to reconstruct the number of edges m : summing over the edges present in all of the cards gives $m(n-2)$, where n is the number of vertices. It is also well known that connectedness and the degree sequence are reconstructible.

Some parameters are reconstructible even if there is not a full deck of cards. For example, Bowler, Brown, Fenner, and Myrvold [6] showed that any $\left\lfloor\frac{n}{2}\right\rfloor+2$ cards suffice to determine whether the graph is connected. Myrvold [13] also found that the degree sequence is reconstructible from any $n-1$ cards.

In this paper, we are concerned with reconstructing the number of edges. Myrvold's result [13] on the degree sequence immediately implies that the size is reconstructible from any $n-1$ cards. In a recent paper, Brown and Fenner [7] showed that, for $n \geq 29$, the size of a graph can be reconstructed from any $n-2$ cards.

Woodall [16] found that, for any $p \geq 3$ and n sufficiently large, if two graphs on n vertices have $n-p$ common cards, then the number of edges in these two graphs differs by at most $p-2$.

In Section 2, we will improve on both results by showing that the size of a graph is reconstructible with up to $\frac{1}{20} \sqrt{n}$ missing cards. In particular, we will prove the following theorem.

Theorem 1.2. For n sufficiently large and $k \leq \frac{1}{20} \sqrt{n}$, the number of edges m of a graph G on n vertices is reconstructible from any $n-k$ cards.

We will also consider the following adversarial version of the problem. An adversary chooses a graph G of order n and gives us a collection of n cards, each showing a graph on $n-1$ vertices. We are told that there are $n-k$ true cards, which come from the deck $\mathcal{D}(G)$. The other k cards are false cards, which can depict any graph of order $n-1$. For which k can we reconstruct the size of G, regardless of the graph G and the cards given by the adversary? Theorem 1.2 immediately implies the following.

Corollary 1.3. Let n be sufficiently large and $k \leq \frac{1}{40} \sqrt{n}$. The number of edges m of a graph G on n vertices is reconstructible from any collection \mathcal{C} of cards where $n-k$ are true and k are false.

Proof. Suppose that G and H are two graphs on n vertices and each has at least $n-k$ cards in common with a deck of cards \mathcal{C}. Then G and H must have at least $n-2 k$ cards in common. We may apply Theorem 1.2 to these $n-2 k$ common cards. If n is sufficiently large and $2 k \leq \frac{1}{20} \sqrt{n}$, then G and H must have the same number of edges.

The rest of the paper is organized as follows. Theorem 1.2 is proved in Section 2 and some open problems are given in Section 3.

2 | SIZE RECONSTRUCTION FROM $n-k$ CARDS

We first give the relevant definitions in Section 2.1 followed by an outline of our proof in Section 2.2. Some of the auxiliary results are given in Section 2.3 and the main proof is presented in Section 2.4.

2.1 | Notation and definitions

Throughout Section 2, G is a graph of order n and size $m=e(G)$, where m is unknown. The vertex set of G is $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and we write G_{i} for the card $G-v_{i}$. We may assume that we are given the cards G_{1}, \ldots, G_{n-k}. In the proof of the main result, we will assume that $k \leq \frac{1}{20} \sqrt{n}$.

For any graph H, let the number of vertices of degree t be

$$
d_{t}(H)=\left|\left\{v \in V(H): d_{H}(v)=t\right\}\right|,
$$

where $d_{H}(v)$ denotes the degree of v in H. For convenience, we write $d_{t}=d_{t}(G)$ and $d(v)=d_{G}(v)$. Note that d_{t} is unknown for every t and that we know $d_{t}\left(G_{1}\right), \ldots, d_{t}\left(G_{n-k}\right)$.

Let $s_{t}=\sum_{i=1}^{n} d_{t}\left(G_{i}\right)$. As we will note below (Lemma 2.2), it is easy to see that

$$
\begin{equation*}
s_{t}=\sum_{i=1}^{n} d_{t}\left(G_{i}\right)=(n-1-t) d_{t}+(t+1) d_{t+1} \tag{1}
\end{equation*}
$$

As we progress in the proof, we will use various estimates determined from the cards for quantities of interest. We set

$$
\widetilde{m}=\left\lfloor\frac{1}{n-2-k} \sum_{i=1}^{n-k} e\left(G_{i}\right)\right\rfloor
$$

as an estimate of the number of edges m,

$$
\widetilde{d}_{t}=\left|\left\{i \in\{1, \ldots, n-k\}: \widetilde{m}-e\left(G_{i}\right)=t\right\}\right|
$$

as an estimate of the number d_{t} of vertices of degree t, and

$$
\tilde{s}_{t}=\sum_{i=1}^{n-k} d_{t}\left(G_{i}\right)
$$

as an estimate of $s_{t}=\sum_{i=1}^{n} d_{t}\left(G_{i}\right)$ (thus s_{t} is the number of degree t vertices in the full deck of cards, while $\widetilde{s_{t}}$ is the number of degree t vertices on the cards that we are allowed to see).

We use the short-hand $[n]=\{1, \ldots, n\}$ and slightly abuse notation by writing $[a, b]=[a, b] \cap \mathbb{Z}$ for the set of integers in the corresponding real interval.

2.2 | Proof overview

We first show that our estimate \widetilde{m} on the number of edges m is an upper bound on m satisfying $0 \leq \widetilde{m}-m<2 k$. Our goal is then to determine $\alpha=\widetilde{m}-m$ from the cards, since this allows us to compute m from \widetilde{m}.

If we knew the number of edges m, then we could calculate the degree of vertex v_{i} from its card G_{i} by setting $d\left(v_{i}\right)=m-e\left(G_{i}\right)$. Instead, we estimate the degree of the vertex corresponding to each card by

$$
\widetilde{d}\left(v_{i}\right)=\widetilde{m}-e\left(G_{i}\right)
$$

and count the number of vertices with estimated degree t

$$
\widetilde{d}_{t}=\left|\left\{i \in[n-k]: \widetilde{m}-e\left(G_{i}\right)=t\right\}\right| .
$$

Since $m \leq \widetilde{m}$, our estimate $\widetilde{d}\left(v_{i}\right)$ may be larger than the actual degree of vertex v_{i}. This means that the actual sequence $\left(d_{t}\right)$ has been shifted to the right by α. Moreover, k degrees did not get counted due to the missing cards. It is important to notice here that we know the shift is equal to α, even when we might not know any of the d_{t} or α itself.

We note that $d_{t}-k \leq \widetilde{d}_{t+\alpha} \leq d_{t}$. Hence, if we were told that $d_{t}>k$ and $d_{t+1}=\cdots=d_{t+2 k}=0$, then we could determine the shift α from $\left(\widetilde{d}_{t}\right)$ (namely, α would be the largest $i \in\{0, \ldots, 2 k\}$ for which $\widetilde{d}_{t+i}>0$). Aiming for a situation like this, we reconstruct d_{t} exactly from the cards for many values of t. If we know d_{t+1}, then the formula given in (1) makes it possible to compute d_{t} from s_{t}. Unfortunately, we cannot determine s_{t} exactly but an estimate \widetilde{s}_{t} suffices in many cases: if we can compute an estimate for the integer d_{t} with error less than $\frac{1}{2}$, then we can round away the error. This is made precise in Claim 1.

In Lemma 2.5, we show that, for many values of t, we can "guess" the integers d_{t} and d_{t+1} from \tilde{s}_{t}. We require the value $\frac{t+1}{n}$ to be bounded away from certain fractions (that do not depend on G). Moreover, we need d_{t} and d_{t+1} to be small (to improve the estimate \widetilde{s}_{t} and to have fewer values to guess between). To find a t for which d_{t} and d_{t+1} are small, we compute yet another estimate d_{t}^{*} from the cards in Lemma 2.4.

Using our reconstructed values for d_{t}, we reconstruct the shift $\alpha=\widetilde{m}-m$ which allows us to determine m.

2.3 | Preliminary results

As noted above, we set

$$
\widetilde{m}=\left\lfloor\frac{1}{n-2-k} \sum_{i=1}^{n-k} e\left(G_{i}\right)\right\rfloor .
$$

We will use \widetilde{m} as an estimate for the number of edges in G. Let

$$
\alpha=\widetilde{m}-m
$$

We can calculate \widetilde{m} from the cards G_{1}, \ldots, G_{n-k}. Thus to determine m, it is enough to determine the "shift" α.

Lemma 2.1. $0 \leq \widetilde{m}-m \leq \frac{k(n-1)}{n-2-k}$.
Note that, if $k=o(n)$, then $\alpha=\widetilde{m}-m \leq(1+o(1)) k$.

Proof of Lemma 2.1. Suppose that we have the entire deck of G. Every edge of G is on exactly $n-2$ cards and therefore $\sum_{i=1}^{n} e\left(G_{i}\right)=(n-2) m$. Furthermore, for every $v_{i} \in V(G)$, we have that $e\left(G_{i}\right)=m-d\left(v_{i}\right)$. It follows that

$$
\sum_{i=1}^{n-k} e\left(G_{i}\right)=(n-2) m-\sum_{i=n-k+1}^{n} e\left(G_{i}\right)=(n-2-k) m+\sum_{j=n-k+1}^{n} d\left(v_{j}\right) .
$$

The claimed bounds follow from the fact that $0 \leq d(v) \leq n-1$ for all $v \in V(G)$.
For $t \in\{0, \ldots, n-1\}$, recall that $s_{t}=\sum_{i=1}^{n} d_{t}\left(G_{i}\right)$ and

$$
\tilde{s}_{t}=\sum_{i=1}^{n-k} d_{t}\left(G_{i}\right)=\sum_{i=1}^{n-k}\left|\left\{v \in V\left(G_{i}\right): d_{G_{i}}(v)=t\right\}\right| .
$$

Note that \widetilde{s}_{t} can be calculated from the given cards.
Lemma 2.2. We have $d_{t}\left(G_{i}\right) \leq d_{t}+d_{t+1}$ and

$$
\begin{equation*}
s_{t}=\sum_{i=1}^{n} d_{t}\left(G_{i}\right)=(n-1-t) d_{t}+(t+1) d_{t+1} \tag{2}
\end{equation*}
$$

In particular, $0 \leq s_{t}-\tilde{s}_{t} \leq k\left(d_{t}+d_{t+1}\right)$.
Proof. A vertex of degree t on a card G_{i} can either have degree t in the graph G or degree $t+1$ (in the case where it is a neighbor of v_{i}). This shows that $d_{t}\left(G_{i}\right) \leq d_{t}+d_{t+1}$ for all i.

A vertex of degree $t+1$ gets counted exactly once in $\sum_{i=1}^{n} d_{t}\left(G_{i}\right)$ for each of its neighbors; a vertex of degree t gets counted on all cards except for its own and those of its neighbors. This proves (2). The last claim follows by combining the fact that $s_{t}-\widetilde{s}_{t}=\sum_{j=n-k+1}^{n} d_{t}\left(G_{j}\right)$ with the first claim.

As noted by Brown and Fenner [7] and others, any result for a graph G implies a corresponding result for its complement \bar{G}.

Observation 2.3. If $\mathcal{D}(G)=\left\{G_{1}, \ldots, G_{n}\right\}$, then $\mathcal{D}(\bar{G})=\left\{\bar{G}_{1}, \ldots, \bar{G}_{n}\right\}$. Moreover, we have that $d_{t}(\bar{G})=d_{n-1-t}(G)$ for any $t \in\{0, \ldots, n-1\}$.

The result below will be used to find values of t for which d_{t} is guaranteed to be small.
Lemma 2.4. Suppose that $k \leq \frac{n}{3}$. For each $t \in\{0, \ldots, n-1\}$ we can calculate a value d_{t}^{*} from the cards that satisfy $\frac{1}{4} d_{t}-1 \leq d_{t}^{*} \leq d_{t-1}+d_{t}+d_{t+1}$.

Proof. We will consider two cases: when $t<\frac{n}{2}$ and when $t \geq \frac{n}{2}$.
Case 1. $t<\frac{n}{2}$.
Define

$$
\begin{equation*}
d_{t}^{*}=d_{t}^{*}(G)=\max \left\{d_{t}\left(G_{i}\right): 1 \leq i \leq n-k\right\} . \tag{3}
\end{equation*}
$$

Note that d_{t}^{*} can be calculated from the given cards and that $d_{t}^{*} \leq d_{t}+d_{t+1}$ by Lemma 2.2.

Let N be the number of times a vertex of degree t in G is seen as a vertex of degree $t-1$ in the cards G_{1}, \ldots, G_{n-k}. We will find upper and lower bounds for N. For the upper bound, note that a vertex of degree t appears as a vertex of degree $t-1$ on the card $G_{i}=G-v_{i}$ if and only if v_{i} is one of its neighbors. Therefore, $N \leq t d_{t}$.

Now consider the card G_{i} for some $i \in[n-k]$. We claim that there are at least $d_{t}-1-d_{t}\left(G_{i}\right)$ vertices that have degree $t-1$ in G_{i} but degree t in G. Indeed, the only missing vertex is v_{i} (which might have degree t) and at most $d_{t}\left(G_{i}\right)$ of the other vertices with degree t in G have degree t in G_{i}. It follows that $N \geq \sum_{i=1}^{n-k}\left(d_{t}-1-d_{t}\left(G_{i}\right)\right)$. We combine these bounds on N to get

$$
t d_{t} \geq N \geq \sum_{i=1}^{n-k}\left(d_{t}-1-d_{t}\left(G_{i}\right)\right) \geq(n-k)\left(d_{t}-d_{t}^{*}-1\right)
$$

Rearranging and using the assumptions that $t<\frac{n}{2}$ and $n-k \geq \frac{2 n}{3}$, we find $\frac{2}{3} d_{t}^{*} \geq \frac{1}{6} d_{t}-\frac{2}{3}$. It follows that $d_{t}^{*} \geq \frac{1}{4} d_{t}-1$.

Case 2. $t \geq \frac{n}{2}$.
Define

$$
\begin{equation*}
d_{t}^{*}=d_{n-1-t}^{*}(\bar{G}) . \tag{4}
\end{equation*}
$$

As $n-1-t<\frac{n}{2}$, this is well defined. From the argument above, we have

$$
\frac{1}{4} d_{n-1-t}(\bar{G})-1 \leq d_{n-1-t}^{*}(\bar{G}) \leq d_{n-1-t}(\bar{G})+d_{n-t}(\bar{G})
$$

By Observation 2.3, we see that

$$
\frac{1}{4} d_{t}(G)-1 \leq d_{n-1-t}^{*}(\bar{G})=d_{t}^{*} \leq d_{t}(G)+d_{t-1}(G)
$$

As d_{t-1} and d_{t+1} are both nonnegative for every value of t, the result follows.
In the proof of Theorem 1.2, we will compare the unknown sequence $\left(d_{t}\right)$ to a sequence $\left(\widetilde{d}_{t}\right)$ that can be calculated from the cards. To do this, we will need to know some values of d_{t} exactly. For the proof we will only need the following lemma in the case when $\beta=\frac{1}{2}$ and t lies in the interval $\left[\frac{n}{3}, \frac{2 n}{3}\right]$. However, the result may be useful elsewhere and so we state it in a more general form.

Lemma 2.5. Suppose $0 \leq \beta<1$ and let $\gamma=\frac{3}{4}+\frac{1}{4} \beta$. Suppose n is sufficiently large and $k=O\left(n^{\beta}\right)$. Then, for any graph G of order n and any deck of $n-k$ cards, the value of d_{t} can be calculated exactly for all but $O\left(n^{\gamma}\right)$ values of t.

Proof. Recall from Lemma 2.2 that

$$
s_{t}=\sum_{i=1}^{n} d_{t}\left(G_{i}\right)=(n-1-t) d_{t}+(t+1) d_{t+1}
$$

and that $\tilde{s}_{t}=\sum_{i=1}^{n-k} d_{t}\left(G_{i}\right)$ approximates s_{t} where $0 \leq s_{t}-\tilde{s}_{t} \leq k\left(d_{t}+d_{t+1}\right)$. Let $q=\frac{t+1}{n} \in[0,1]$. Then $\frac{s_{t}}{n}=(1-q) d_{t}+q d_{t+1}$ and

$$
\left|\frac{s_{t}}{n}-\frac{\widetilde{s}_{t}}{n}\right| \leq \frac{k\left(d_{t}+d_{t+1}\right)}{n} .
$$

Our goal will be to find values of t for which there is only one choice of (a, b) such that $\left|(1-q) a+q b-\frac{\tilde{s}_{t}}{n}\right| \in\left[0, \frac{k\left(d_{t}+d_{t+1}\right)}{n}\right]$. To achieve this, we first restrict to those values of t for which we can calculate an upper bound on d_{t} and d_{t+1} from the cards. Assume that n is sufficiently large to ensure $k \leq \frac{n}{3}$. Lemma 2.4 then applies to ensure that, for all t the quantity d_{t}^{*} (which is defined in (3) and (4) and can be calculated from the cards) satisfies $\frac{1}{4} d_{t}-1 \leq d_{t}^{*} \leq d_{t-1}+d_{t}+d_{t+1}$. By the lower bound, if d_{t}^{*} is small, then d_{t} is small as well. We use the upper bound to show that d_{t}^{*} is small for most values of t. Indeed, let $K=n^{1-\gamma}, I=\{0, \ldots, n-1\}$, and $A=\left\{t \in I: d_{t}^{*}+1 \geq \frac{1}{4} K\right\}$. Then

$$
\frac{1}{4} K|A| \leq \sum_{t \in A}\left(d_{t}^{*}+1\right) \leq \sum_{t \in A}\left(d_{t-1}+d_{t}+d_{t+1}+1\right) \leq 4 n .
$$

and hence $|A| \leq 16 n / K=16 n^{\gamma}$. For all t in the set $I^{\prime}=\{t \in I: t, t+1 \notin A\}$, we know that $d_{t}, d_{t+1}<K$. Since $|\{t \in I: t+1 \in A\}| \leq|A|$, by restricting to I^{\prime}, we remove at most $O\left(n^{\gamma}\right)$ potential t.

For all $t \in I^{\prime}$, we know that

$$
0 \leq(1-q) d_{t}+q d_{t+1}-\frac{\tilde{s}_{t}}{n} \leq \frac{k\left(d_{t}+d_{t+1}\right)}{n}<\frac{2 K k}{n}
$$

It remains to determine for which $q=\frac{t+1}{n}$ the following holds: any two elements in $X=\{(1-q) a+q b: a, b \in\{0, \ldots[K]\}\}$ take values that are at least $\frac{4 K k}{n}$ apart, so that there is at most one $(1-q) a+q b \in X$ within $\frac{2 K k}{n}$ of \tilde{s}_{t}. For all such ${ }^{n} t \in I^{\prime}$, we can then reconstruct d_{t} and d_{t+1} from the cards as the unique choices for a and b.

Let $M=\frac{4 K k}{n}$. Suppose that, for some $\delta<M$, we are able to find elements $a>a^{\prime}$ and $b<b^{\prime}$ within $\{0, \ldots,\lfloor K\rfloor\}$ satisfying $a(1-q)+b q=a^{\prime}(1-q)+b^{\prime} q+\delta$. Rearranging, we get

$$
a-a^{\prime}=\left(b^{\prime}-b+a-a^{\prime}\right) q+\delta
$$

In particular, $\left(b^{\prime}-b+a-a^{\prime}\right) q+\delta$ is an integer. As $b^{\prime}-b+a-a^{\prime} \in\{1, \ldots,\lfloor 2 K\rfloor\}$, it suffices to ensure that, for all $y \in\{1, \ldots,\lfloor 2 K\rfloor\}, y q$ is at distance at least M from all integers $x \in\{1, \ldots,\lfloor K]\}$. Let

$$
R=\left\{\frac{x}{y}: x \in\{1, \ldots,\lfloor K]\}, y \in\{1, \ldots,\lfloor 2 K]\}\right\}
$$

and

$$
S=\left\{t: \exists r \in R \text { such that }\left|\frac{t+1}{n}-r\right|<M\right\} .
$$

As argued above, for each $t \in I^{\prime} \backslash S$ we are able to "guess" the values of d_{t} and d_{t+1}. It remains to bound the size of S. The set R has size less than $2 K^{2}$. For each choice of $r \in R$, there are at most $2 M n$ elements of the form $\frac{i}{n}$ with $i \in\{0, \ldots, n-1\}$ that are within M of r. This shows that $|S| \leq 2 M n|R| \leq 16 k K^{3}$. Recall that $k=O\left(n^{\beta}\right), 16 K^{3}=O\left(n^{3(1-\gamma)}\right)$, and $\gamma=\frac{3}{4}+\frac{1}{4} \beta$. We calculate

$$
\beta+3(1-\gamma)=\beta+3\left(\frac{1}{4}-\frac{1}{4} \beta\right)=\gamma
$$

Let $J=I^{\prime} \backslash S$. For every $t \in J$, we can calculate d_{t} exactly and furthermore $\left.|I \backslash J|=\mid\left(I \backslash I^{\prime}\right) \cup S\right) \mid=O\left(n^{\gamma}\right)$ as desired.

Since $\gamma<1$, the result shows that we can reconstruct d_{t} for all but $o(n)$ of the $t \in[0, n]$.

2.4 | Proof of main result

We are now ready to prove Theorem 1.2, which is restated below.
Theorem 1.2. For n sufficiently large and $k \leq \frac{1}{20} \sqrt{n}$, the number of edges m of a graph G on n vertices is reconstructible from any $n-k$ cards.

Proof. Let n be sufficiently large and $k=\left\lfloor\frac{1}{20} \sqrt{n}\right\rfloor$. Let G be a graph on n vertices and let G_{1}, \ldots, G_{n-k} be the $n-k$ cards of G that we are given.

Our goal is to determine d_{t} for many values of t. We will handle values of t for which $d_{t}>\sqrt{n}$ separately from those t where $d_{t} \leq \sqrt{n}$. For this reason, it will be convenient to say that d_{t} is big if $d_{t}>\sqrt{n}$ and little if $d_{t} \leq \frac{3}{4} \sqrt{n}$.

Claim 1. Suppose that, for some $t \leq \frac{2 n}{3}-1$, the value of d_{t+1} is known exactly and is not big. Then either d_{t} can be calculated exactly or d_{t} can be identified as being big.

Proof. Since we can calculate $\tilde{s}_{t}=\sum_{i=1}^{n-k} d_{t}\left(G_{i}\right)$ from the cards, if d_{t+1} is known, then we can calculate

$$
d_{t}^{\prime}=\frac{1}{n-1-t}\left(\widetilde{s}_{t}-(t+1) d_{t+1}\right)
$$

from the cards. By Lemma 2.2,

$$
d_{t}=d_{t}^{\prime}+\frac{s_{t}-\tilde{s}_{t}}{n-1-t}
$$

where $0 \leq s_{t}-\widetilde{s}_{t} \leq k\left(d_{t}+d_{t+1}\right)$. In particular $d_{t} \geq d_{t}^{\prime}$, so we recognize that d_{t} is big if $d_{t}^{\prime}>\sqrt{n}$. We now show that, if $d_{t}^{\prime} \leq \sqrt{n}$, then the closest integer to d_{t}^{\prime} equals d_{t}.

Since $t+1 \leq \frac{2 n}{3}$ and d_{t+1} is not big,

$$
\begin{equation*}
\frac{s_{t}-\tilde{s}_{t}}{n-1-t} \leq \frac{3}{n} k\left(d_{t}+d_{t+1}\right) \leq \frac{3}{n} k\left(d_{t}+\sqrt{n}\right) \leq \frac{3}{20 \sqrt{n}}\left(d_{t}+\sqrt{n}\right) . \tag{5}
\end{equation*}
$$

We conclude that $d_{t}-d^{\prime}<\frac{1}{2}$ if $d_{t} \leq 2 \sqrt{n}$. Hence the closest integer to d_{t}^{\prime} equals d_{t} in this case.

From the calculation in (5) we also find

$$
d^{\prime} \geq d_{t}-\frac{s_{t}-\tilde{s}_{t}}{n-1-t}>d_{t}-\frac{3}{20 \sqrt{n}}\left(d_{t}+\sqrt{n}\right) \geq \frac{1}{2} d_{t}>\sqrt{n}
$$

if $d_{t}>2 \sqrt{n}$. Hence either $d_{t}^{\prime}>\sqrt{n}$ (in which case d_{t} is big) or rounding it to the nearest integer gives us d_{t} exactly.

Claim 2. Suppose that, for some $t \geq \frac{n}{3}+1$, the value of d_{t-1} is known exactly and is not big. Then either d_{t} can be calculated exactly or d_{t} can be identified as being big.

Proof. If $t \geq \frac{n}{3}+1$, then $n-t-1 \leq \frac{2 n}{3}-1$. By Observation 2.3, we have $d_{n-t}(\bar{G})=d_{t-1}(G)$. Apply Claim 1 to \bar{G} to see that either $d_{t}(G)=d_{n-t-1}(\bar{G})$ can be calculated exactly or it can be identified as being big.

Claim 3. The interval $\left[\frac{n}{3}, \frac{2 n}{3}\right]$ contains $2 k$ consecutive values of t such that every d_{t} can be calculated exactly and they are all little.

Proof. Let $I=\left[\frac{n}{3}, \frac{2 n}{3}\right] \cap \mathbb{N}$. Lemma 2.5 with $\beta=\frac{1}{2}$ gives a set $J \subseteq I$ and a constant c such that $|J| \leq c n^{\frac{7}{8}}$ and we can calculate d_{t} exactly if $t \in I \backslash J$.

Partition I into $\left\lfloor\frac{n}{6 k}\right\rfloor$ intervals of length $2 k$. At most $\left\lfloor\frac{n^{7 / 8}}{2 k}\right\rfloor$ of them are completely contained in J. For n sufficiently large, $\left\lfloor\frac{n}{6 k}\right\rfloor-\left\lfloor\frac{c n^{7 / 8}}{2 k}\right\rfloor \geq \frac{n}{8 k}$. Therefore, for these values of n, there are at least $\frac{n}{8 k}$ intervals which are not completely contained within J. By Claims 1 and 2 , we are able to calculate d_{t} exactly for all values of t in each of these intervals unless the interval happens to contain a value of t for which d_{t} is big.

We know that there are at most $\frac{4}{3} \sqrt{n}$ values of $t \in\{0, \ldots, n-1\}$ for which d_{t} is not little. Therefore, as $\frac{n}{8 k} \geq \frac{5}{2} \sqrt{n}>\frac{4}{3} \sqrt{n}$, there exists an interval which is not completely contained within J and which only contains values of d_{t} that are little, each of which we can calculate exactly.

By Claim 3, we can find an interval $\mathcal{I}=\{b, b+1, \ldots, b+2 k-1\} \subset\left[\frac{n}{3}, \frac{2 n}{3}\right]$ such that, for every $t \in \mathcal{I}$, we can calculate d_{t} exactly and it is little. We may then recursively apply Claim 1, starting with $t+1=b$. We continue until either we reach d_{0} or we hit a big vertex $d_{t_{\ell}}$ for some $t_{\ell}<b$. Similarly, we may recursively apply Claim 2, starting with $t-1=b+2 k-1$. Again, we will either calculate d_{n-1} or we will identify that $d_{t_{r}}$ is big for some $t_{r}>b+2 k-1$.

If we are able to calculate both d_{0} and d_{n-1}, then we will know d_{t} for every $t \in\{0, \ldots, n-1\}$. This tells us the degree sequence of G and hence we can directly calculate m.

Therefore, we may assume that we have the following situation: there exists an interval $\mathcal{J} \supseteq \mathcal{I}$ with endpoints t_{ℓ} and t_{r} such that $t_{\ell}<t_{r}$. For every $t \in \mathcal{N}\left\{t_{\ell}, t_{r}\right\}$, the value d_{t} is known exactly and is not big. At least one of $d_{t_{e}}$ and $d_{t_{r}}$ has been identified as being big. By Observation 2.3, we may assume that $d_{t_{e}}$ is big.

By Lemma 2.1, the estimate \widetilde{m} for m that we can obtain from the cards G_{1}, \ldots, G_{n-k} satisfies $\widetilde{m}=m+\alpha$ with $0 \leq \alpha \leq\left\lfloor\frac{k(n-1)}{n-2-k}\right\rfloor$. For n sufficiently large, we have $n-1<2(n-2-k)$ and hence $\alpha<2 k$. Recall from the proof overview that $\widetilde{d}_{t}=\left|\left\{i \in\{1, \ldots, n-k\}: \widetilde{m}-e\left(G_{i}\right)=t\right\}\right|$ can be calculated from the cards and that our goal is to discover the "shift" $\alpha=\widetilde{m}-m$ in this sequence. The overall shape of $\widetilde{d}_{0}, \ldots, \widetilde{d}_{n-1}$ will be the same as the overall of shape of d_{0}, \ldots, d_{n-1} but shifted to the right by α. Moreover, we are "missing" k values, so that $\sum_{t=0}^{n-1}\left|d_{t}-\widetilde{d}_{t+\alpha}\right|=k$. (Note that we need to calculate \widetilde{d}_{t} for $0 \leq t \leq n+2 k$ and that, for $t+\alpha \geq n$, it is possible for $\widetilde{d}_{t+\alpha}$ to take a nonzero value.)

Although we do not know the exact value of $d_{t_{\epsilon}}$, it is sufficient to redefine each d_{t} and \widetilde{d}_{t} to be the minimum of their current value and \sqrt{n}. After doing this, we still have $\sum_{t=0}^{n-1}\left|d_{t}-\widetilde{d}_{t+\alpha}\right| \leq k$. It follows that $\sum_{t=t_{e}}^{t_{r}-1}\left|d_{t}-\widetilde{d}_{t+\alpha}\right| \leq k$. We now show that α can be recognized as the unique "shift" s in a given interval that ensures \widetilde{d}_{t+s} is sufficiently close to d_{t}.

Claim 4. For $\quad s \in\{0, \ldots, 2 k-1\}, \quad \sum_{t=t_{e}}^{t_{r}-1}\left|d_{t}-\tilde{d}_{t+s}\right| \leq k \quad$ if \quad and \quad only \quad if $s=\alpha$. Proof. Fix $s \in\{0, \ldots, 2 k-1\}$. We noted above that $\sum_{t=t_{e}}^{t_{r}-1}\left|d_{t}-\tilde{d}_{t+\alpha}\right| \leq k$. It remains to show that $\sum_{t=t_{e}}^{t_{r}-1}\left|d_{t}-\tilde{d}_{t+s}\right|>k$ if $s \neq \alpha$. Let $s \in\{0, \ldots, 2 k-1\} \backslash\{\alpha\}$. We have

$$
\begin{align*}
\sum_{t=t_{e}}^{t_{r}-1}\left|d_{t}-\widetilde{d}_{t+s}\right| & =\sum_{t=t_{e}}^{t_{r}-1}\left|d_{t}-d_{t+s-\alpha}+d_{t+s-\alpha}-\tilde{d}_{t+s}\right| \tag{6}\\
& \geq \sum_{t=t_{e}}^{t_{r}-1}\left|d_{t}-d_{t+s-\alpha}\right|-\sum_{t=t_{e}}^{t_{r}-1}\left|d_{t+s-\alpha}-\widetilde{d}_{t+s}\right|
\end{align*}
$$

Since $\sum_{t=0}^{n-1}\left|d_{t}-\widetilde{d}_{t+\alpha}\right| \leq k$, it follows that

$$
\sum_{t=t_{e}}^{t_{r}-1}\left|d_{t+s-\alpha}-\widetilde{d}_{t+s}\right|=\sum_{t=t_{e}+s-\alpha}^{t_{r}+s-\alpha-1}\left|d_{t}-\widetilde{d}_{t+\alpha}\right| \leq k
$$

Hence, (6) will be strictly greater than k whenever $\sum_{t=t_{e}}^{t_{r}-1}\left|d_{t}-d_{t+s-\alpha}\right|>2 k$.

By Claim 4, we see that α is the only value $s \in\{0, \ldots, 2 k-1\}$ satisfying $\sum_{t=t_{e}}^{t_{r}-1}\left|d_{t}-\widetilde{d}_{t+s}\right| \leq k$. As we have calculated $\left(d_{t}\right)_{t=t_{e}}^{t_{r}}$ and $\left(\widetilde{d}_{t}\right)$ from the cards, and we know k as well, we are able to find the value $s \in\{0, \ldots, 2 k-1\}$ satisfying $\sum_{t=t_{e}}^{t_{r}-1}\left|d_{t}-\widetilde{d}_{t+s}\right| \leq k$, and hence identify α. Once we have identified α, we can then calculate $m=\widetilde{m}-\alpha$, the number of edges in G.

3 | CONCLUSION

We have shown that the size of a graph can be reconstructed if we are given a deck from which either at most $\frac{1}{20} \sqrt{n}$ cards are missing or at most $\frac{1}{40} \sqrt{n}$ cards are false. The constants can be improved a little, although we do not know whether the result remains true with \sqrt{n} missing cards. However, we suspect that stronger results could be proved by using more information about the degree sequences on the cards.

We also note that $c \sqrt{n}$ is still very far away from the best known lower bounds, which are linear. For example, for $n=3 p+1$, Bowler, Brown, and Fenner [5] have given the following two graphs which differ in the number of edges but have $\frac{2}{3}(n-1)$ cards in common: the graphs $G=2 K_{p+1}+K_{p-1}$ and $H=K_{p+1}+2 K_{p}$ both have $3 p+1$ vertices and at least $2 p$ cards of the form $K_{p+1}+K_{p}+K_{p-1}$. We suspect that the lower bound is closer to the truth and propose the following question.

Problem 3.1. Does there exist some $\varepsilon>0$ such that, for any graph G on n vertices, we can reconstruct the number of edges of G from any subset of at least $(1-\varepsilon) n$ cards?

Another direction for future work is to reconstruct other graph parameters, such as the degree sequence or the number of triangles. Although our techniques do not immediately extend to this setting, we conjecture this should be possible from a partial deck as well.

Conjecture 3.2. Fix $k \in \mathbb{N}$ and a graph H and let n be sufficiently large. For every graph G on n vertices, the number of subgraphs of G isomorphic to H is reconstructible given any $n-k$ cards from $\mathcal{D}(G)$.

If we are given the entire deck $\mathcal{D}(G)$ (ie, $k=0$), then this problem is solved by Kelly's lemma [9], which states that for any two graphs G and H with $|G|>|H|$, the number of subgraphs of G isomorphic to H is reconstructible.

If the number of edges is known, then the degree of a vertex can be calculated from the number of edges on its card. Therefore, by our main result, if $k \leq \frac{1}{20} \sqrt{n}$, then all but k of the degrees are known. If k is larger, then Lemma 2.5 still allows us to construct most of the degree sequences. We expect that, for a large range of k, it is possible to determine the whole degree sequence exactly. As a first step, we make the following conjecture.

Conjecture 3.3. Fix $k \in \mathbb{N}$ and let n be sufficiently large. For any graph G on n vertices, the degree sequence of G is reconstructible from any $n-k$ cards.

Note that a positive answer to Problem 3.2 would give a positive answer to Conjecture 3.3: for fixed k and n sufficiently large, we can find the number of edges of the graph by Theorem 1.2 and hence determine all but k elements of the degree sequence. Provided n is sufficiently large, we can reconstruct the number of copies of the star $K_{1, j}$ for $j=1, \ldots, k+1$; this is given by $\sum_{v \in V(G)}\binom{d(v)}{j}$. By subtracting the terms corresponding to vertices of known degree, we obtain a sequence of polynomials in the unknown degrees. Adding constants, these form a basis for all polynomials of degree at most $k+1$. From these, it is straightforward to evaluate the remaining degrees.

ACKNOWLEDGMENTS

We would like to thank the referees for their helpful comments. Alex Scott was supported by a Leverhulme Trust Research Fellowship.

ORCID

Carla Groenland (D) http://orcid.org/0000-0002-9878-8750
Hannah Guggiari (D) http://orcid.org/0000-0002-0525-0039
Alex Scott © http://orcid.org/0000-0003-4489-5988

REFERENCES

1. K. Asciak et al., A survey of some open questions in reconstruction numbers, Ars Combin. 97 (2010), 443-456.
2. B. Bollobás, Almost every graph has reconstruction number three, J. Graph Theory 14 (1990), no. 1, 1-4.
3. J. Bondy, A graph reconstructor's manual, Surv. Combin. 166 (1991), 221-252.
4. J. Bondy and R. Hemminger, Graph reconstruction-a survey, J. Graph Theory 1 (1977), no. 3, 227-268.
5. A. Bowler, P. Brown, and T. Fenner, Families of pairs of graphs with a large number of common cards, J. Graph Theory 63 (2010), 146-163.
6. A. Bowler et al., Recognising connectedness from vertex-deleted subgraphs, J. Graph Theory 67 (2011), 285-299.
7. P. Brown and T. Fenner, The size of a graph is reconstructible from any $n-2$ cards, Discrete Math. 341 (2018), 165-174.
8. P. Kelly, On isometric transformations, Ph.D. Thesis, University of Wisconsin, 1942.
9. P. Kelly, A congruence theorem for trees, Pacific J. Math. 7 (1957), 961-968.
10. J. Lauri and R. Scapellato, Topics in graph automorphisms and reconstruction, 2nd ed., Cambridge University Press, New York, 2016.
11. V. Müller, Probabilistic reconstruction from subgraphs, Comment. Math. Univ. Carolin. 17 (1976), 709-719.
12. W. Myrvold, Ally and adversary reconstruction problems, Ph.D. Thesis, University of Waterloo, 1988.
13. W. Myrvold, The degree sequence is reconstructible from $n-1$ cards, Discrete Math. 102 (1992), 187-196.
14. C. Nash-Williams, The reconstruction problem, Selected Topics in Graph Theory (L. Beineke and R. Wilson, eds.), Academic Press, San Diego, 1978, pp. 205-236.
15. S. Ulam, A collection of mathematical problems, Interscience tracts in pure and applied mathematics, vol. 8, Interscience, New York, 1960.
16. D. Woodall, Towards size reconstruction from fewer cards, Discrete Math. 338 (2015), 2515-2522.

How to cite this article: Groenland, C, Guggiari, H, Scott, A. Size reconstructibility of graphs. J Graph Theory. 2021;96:326-337. https://doi.org/10.1002/jgt.22616

[^0]: [There were "end of proof symbols" missing in the initial publication of the paper online, which have been revised and added to reflect on 12 August 2020, on pages 8, 9, and 10.]

