2,012 research outputs found

    Computational periscopy with an ordinary digital camera

    Full text link
    Computing the amounts of light arriving from different directions enables a diffusely reflecting surface to play the part of a mirror in a periscope—that is, perform non-line-of-sight imaging around an obstruction. Because computational periscopy has so far depended on light-travel distances being proportional to the times of flight, it has mostly been performed with expensive, specialized ultrafast optical systems^1,2,3,4,5,6,7,8,9,10,11,12. Here we introduce a two-dimensional computational periscopy technique that requires only a single photograph captured with an ordinary digital camera. Our technique recovers the position of an opaque object and the scene behind (but not completely obscured by) the object, when both the object and scene are outside the line of sight of the camera, without requiring controlled or time-varying illumination. Such recovery is based on the visible penumbra of the opaque object having a linear dependence on the hidden scene that can be modelled through ray optics. Non-line-of-sight imaging using inexpensive, ubiquitous equipment may have considerable value in monitoring hazardous environments, navigation and detecting hidden adversaries.We thank F. Durand, W. T. Freeman, Y. Ma, J. Rapp, J. H. Shapiro, A. Torralba, F. N. C. Wong and G. W. Wornell for discussions. This work was supported by the Defense Advanced Research Projects Agency (DARPA) REVEAL Program contract number HR0011-16-C-0030. (HR0011-16-C-0030 - Defense Advanced Research Projects Agency (DARPA) REVEAL Program)Accepted manuscrip

    Fast Back-Projection for Non-Line of Sight Reconstruction

    Get PDF
    Recent works have demonstrated non-line of sight (NLOS) reconstruction by using the time-resolved signal frommultiply scattered light. These works combine ultrafast imaging systems with computation, which back-projects the recorded space-time signal to build a probabilistic map of the hidden geometry. Unfortunately, this computation is slow, becoming a bottleneck as the imaging technology improves. In this work, we propose a new back-projection technique for NLOS reconstruction, which is up to a thousand times faster than previous work, with almost no quality loss. We base on the observation that the hidden geometry probability map can be built as the intersection of the three-bounce space-time manifolds defined by the light illuminating the hidden geometry and the visible point receiving the scattered light from such hidden geometry. This allows us to pose the reconstruction of the hidden geometry as the voxelization of these space-time manifolds, which has lower theoretic complexity and is easily implementable in the GPU. We demonstrate the efficiency and quality of our technique compared against previous methods in both captured and synthetic dat

    Recent advances in transient imaging: A computer graphics and vision perspective

    Get PDF
    Transient imaging has recently made a huge impact in the computer graphics and computer vision fields. By capturing, reconstructing, or simulating light transport at extreme temporal resolutions, researchers have proposed novel techniques to show movies of light in motion, see around corners, detect objects in highly-scattering media, or infer material properties from a distance, to name a few. The key idea is to leverage the wealth of information in the temporal domain at the pico or nanosecond resolution, information usually lost during the capture-time temporal integration. This paper presents recent advances in this field of transient imaging from a graphics and vision perspective, including capture techniques, analysis, applications and simulation

    Recent advances in transient imaging: A computer graphics and vision perspective

    Get PDF
    Transient imaging has recently made a huge impact in the computer graphics and computer vision fields. By capturing, reconstructing, or simulating light transport at extreme temporal resolutions, researchers have proposed novel techniques to show movies of light in motion, see around corners, detect objects in highly-scattering media, or infer material properties from a distance, to name a few. The key idea is to leverage the wealth of information in the temporal domain at the pico or nanosecond resolution, information usually lost during the capture-time temporal integration. This paper presents recent advances in this field of transient imaging from a graphics and vision perspective, including capture techniques, analysis, applications and simulation
    • …
    corecore