7 research outputs found

    Reconstructing Markov processes from independent and anonymous experiments

    Get PDF
    a b s t r a c t We investigate the problem of exactly reconstructing, with high confidence and up to isomorphism, the ball of radius r centered at the starting state of a Markov process from independent and anonymous experiments. In an anonymous experiment, the states are visited according to the underlying transition probabilities, but no global state names are known: one can only recognize whether two states, reached within the same experiment, are the same. We prove quite tight bounds for such exact reconstruction in terms of both the number of experiments and their lengths

    GraLSP: Graph Neural Networks with Local Structural Patterns

    Full text link
    It is not until recently that graph neural networks (GNNs) are adopted to perform graph representation learning, among which, those based on the aggregation of features within the neighborhood of a node achieved great success. However, despite such achievements, GNNs illustrate defects in identifying some common structural patterns which, unfortunately, play significant roles in various network phenomena. In this paper, we propose GraLSP, a GNN framework which explicitly incorporates local structural patterns into the neighborhood aggregation through random anonymous walks. Specifically, we capture local graph structures via random anonymous walks, powerful and flexible tools that represent structural patterns. The walks are then fed into the feature aggregation, where we design various mechanisms to address the impact of structural features, including adaptive receptive radius, attention and amplification. In addition, we design objectives that capture similarities between structures and are optimized jointly with node proximity objectives. With the adequate leverage of structural patterns, our model is able to outperform competitive counterparts in various prediction tasks in multiple datasets

    GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training

    Full text link
    Graph representation learning has emerged as a powerful technique for addressing real-world problems. Various downstream graph learning tasks have benefited from its recent developments, such as node classification, similarity search, and graph classification. However, prior arts on graph representation learning focus on domain specific problems and train a dedicated model for each graph dataset, which is usually non-transferable to out-of-domain data. Inspired by the recent advances in pre-training from natural language processing and computer vision, we design Graph Contrastive Coding (GCC) -- a self-supervised graph neural network pre-training framework -- to capture the universal network topological properties across multiple networks. We design GCC's pre-training task as subgraph instance discrimination in and across networks and leverage contrastive learning to empower graph neural networks to learn the intrinsic and transferable structural representations. We conduct extensive experiments on three graph learning tasks and ten graph datasets. The results show that GCC pre-trained on a collection of diverse datasets can achieve competitive or better performance to its task-specific and trained-from-scratch counterparts. This suggests that the pre-training and fine-tuning paradigm presents great potential for graph representation learning.Comment: 11 pages, 5 figures, to appear in KDD 2020 proceeding

    Are Graph Convolutional Networks Fully Exploiting Graph Structure?

    Get PDF
    Graph Convolutional Networks (GCNs) generalize the idea of deep convolutional networks to graphs, and achieve state-of-the-art results on many graph related tasks. GCNs rely on the graph structure to define an aggregation strategy where each node updates its representation by combining information from its neighbours. In this paper we formalize four levels of structural information injection, and use them to show that GCNs ignore important long-range dependencies embedded in the overall topology of a graph. Our proposal includes a novel regularization technique based on random walks with restart, called RWRReg, which encourages the network to encode long-range information into the node embeddings. RWRReg is further supported by our theoretical analysis, which demonstrates that random walks with restart empower aggregation-based strategies (i.e., the Weisfeiler-Leman algorithm) with long-range information. We conduct an extensive experimental analysis studying the change in performance of several state-of-the-art models given by the four levels of structural information injection, on both transductive and inductive tasks. The results show that the lack of long-range structural information greatly affects performance on all considered models, and that the information extracted by random walks with restart, and exploited by RWRReg, gives an average accuracy improvement of more than 5%5\% on all considered tasks

    A Network Science perspective of Graph Convolutional Networks: A survey

    Full text link
    The mining and exploitation of graph structural information have been the focal points in the study of complex networks. Traditional structural measures in Network Science focus on the analysis and modelling of complex networks from the perspective of network structure, such as the centrality measures, the clustering coefficient, and motifs and graphlets, and they have become basic tools for studying and understanding graphs. In comparison, graph neural networks, especially graph convolutional networks (GCNs), are particularly effective at integrating node features into graph structures via neighbourhood aggregation and message passing, and have been shown to significantly improve the performances in a variety of learning tasks. These two classes of methods are, however, typically treated separately with limited references to each other. In this work, aiming to establish relationships between them, we provide a network science perspective of GCNs. Our novel taxonomy classifies GCNs from three structural information angles, i.e., the layer-wise message aggregation scope, the message content, and the overall learning scope. Moreover, as a prerequisite for reviewing GCNs via a network science perspective, we also summarise traditional structural measures and propose a new taxonomy for them. Finally and most importantly, we draw connections between traditional structural approaches and graph convolutional networks, and discuss potential directions for future research

    Reconstructing Markov processes from independent and anonymous experiments

    No full text
    We investigate the problem of exactly reconstructing, with high confidence and up to isomorphism, the ball of radius r centered at the starting state of a Markov process from independent and anonymous experiments. In an anonymous experiment, the states are visited according to the underlying transition probabilities, but no global state names are known: one can only recognize whether two states, reached within the same experiment, are the same. We prove quite tight bounds for such exact reconstruction in terms of both the number of experiments and their lengths. Keywords: Graph reconstruction; Random walk; Markov process; Local algorithm
    corecore