5,693 research outputs found

    Detail-preserving and Content-aware Variational Multi-view Stereo Reconstruction

    Full text link
    Accurate recovery of 3D geometrical surfaces from calibrated 2D multi-view images is a fundamental yet active research area in computer vision. Despite the steady progress in multi-view stereo reconstruction, most existing methods are still limited in recovering fine-scale details and sharp features while suppressing noises, and may fail in reconstructing regions with few textures. To address these limitations, this paper presents a Detail-preserving and Content-aware Variational (DCV) multi-view stereo method, which reconstructs the 3D surface by alternating between reprojection error minimization and mesh denoising. In reprojection error minimization, we propose a novel inter-image similarity measure, which is effective to preserve fine-scale details of the reconstructed surface and builds a connection between guided image filtering and image registration. In mesh denoising, we propose a content-aware ℓp\ell_{p}-minimization algorithm by adaptively estimating the pp value and regularization parameters based on the current input. It is much more promising in suppressing noise while preserving sharp features than conventional isotropic mesh smoothing. Experimental results on benchmark datasets demonstrate that our DCV method is capable of recovering more surface details, and obtains cleaner and more accurate reconstructions than state-of-the-art methods. In particular, our method achieves the best results among all published methods on the Middlebury dino ring and dino sparse ring datasets in terms of both completeness and accuracy.Comment: 14 pages,16 figures. Submitted to IEEE Transaction on image processin

    Learning to Reconstruct Texture-less Deformable Surfaces from a Single View

    Get PDF
    Recent years have seen the development of mature solutions for reconstructing deformable surfaces from a single image, provided that they are relatively well-textured. By contrast, recovering the 3D shape of texture-less surfaces remains an open problem, and essentially relates to Shape-from-Shading. In this paper, we introduce a data-driven approach to this problem. We introduce a general framework that can predict diverse 3D representations, such as meshes, normals, and depth maps. Our experiments show that meshes are ill-suited to handle texture-less 3D reconstruction in our context. Furthermore, we demonstrate that our approach generalizes well to unseen objects, and that it yields higher-quality reconstructions than a state-of-the-art SfS technique, particularly in terms of normal estimates. Our reconstructions accurately model the fine details of the surfaces, such as the creases of a T-Shirt worn by a person.Comment: Accepted to 3DV 201
    • 

    corecore