5 research outputs found

    Reconfiguring triangulations with edge flips and point moves

    No full text
    Abstract. We examine reconfigurations between triangulations and neartriangulations of point sets, and give new bounds on the number of point moves and edge flips sufficient for any reconfiguration. We show that with O(n log n) edge flips and point moves, we can transform any geometric near-triangulation on n points to any other geometric near-triangulation on n possibly different points. This improves the previously known bound of O(n 2) edge flips and point moves.

    Reconfiguring Triangulations with Edge Flips and Point Moves

    No full text

    Reconfiguring triangulations with edge flips and point moves

    No full text
    We examine reconfigurations between triangulations and near-triangulations of point sets. We give new bounds on the number of point moves and edge flips sufficient for any reconfiguration. We show that with O(n log n) edge flips and point moves, we can transform any geometric near-triangulation on n points to any other geometric near-triangulation on n possibly different points. This improves the previously known bound of O(n 2) edge flips and point moves. We then show that with a slightly more general point move, we can further reduce the complexity to O(n) point moves and edge flips

    IST Austria Thesis

    Get PDF
    This thesis considers two examples of reconfiguration problems: flipping edges in edge-labelled triangulations of planar point sets and swapping labelled tokens placed on vertices of a graph. In both cases the studied structures – all the triangulations of a given point set or all token placements on a given graph – can be thought of as vertices of the so-called reconfiguration graph, in which two vertices are adjacent if the corresponding structures differ by a single elementary operation – by a flip of a diagonal in a triangulation or by a swap of tokens on adjacent vertices, respectively. We study the reconfiguration of one instance of a structure into another via (shortest) paths in the reconfiguration graph. For triangulations of point sets in which each edge has a unique label and a flip transfers the label from the removed edge to the new edge, we prove a polynomial-time testable condition, called the Orbit Theorem, that characterizes when two triangulations of the same point set lie in the same connected component of the reconfiguration graph. The condition was first conjectured by Bose, Lubiw, Pathak and Verdonschot. We additionally provide a polynomial time algorithm that computes a reconfiguring flip sequence, if it exists. Our proof of the Orbit Theorem uses topological properties of a certain high-dimensional cell complex that has the usual reconfiguration graph as its 1-skeleton. In the context of token swapping on a tree graph, we make partial progress on the problem of finding shortest reconfiguration sequences. We disprove the so-called Happy Leaf Conjecture and demonstrate the importance of swapping tokens that are already placed at the correct vertices. We also prove that a generalization of the problem to weighted coloured token swapping is NP-hard on trees but solvable in polynomial time on paths and stars

    The polyhedral Gauss map and discrete curvature measures in geometric modelling.

    Get PDF
    The Work in this thesis is concentrated on the study of discrete curvature as an important geometric property of objects, useful in describing their shape. The main focus is on the study of the methods to measure the discrete curvature on polyhedral surfaces. The curvatures associated with a polyhedral surface are concentrated around its vertices and along its edges. An existing method to evaluate the curvature at a vertex is the Angle Deficit, which also characterises vertices into flat, convex or saddle. In discrete surfaces other kinds of vertices are possible which this method cannot identify. The concept of Total Absolute Curvature (TAC) has been established to overcome this limitation, as a measure of curvature independent of the orientation of local geometry. However no correct implementation of the TAC exists for polyhedral surfaces, besides very simple cases.For two-dimensional discrete surfaces in space, represented as polygonal meshes, the TAC is measured by means of the Polyhedral Gauss Map (PGM) of vertices. This is a representation of the curvature of a vertex as an area on the surface of a sphere. Positive and negative components of the curvature of a vertex are distinguished as spherical polygons on the PGM. Core contributions of this thesis are the methods to identify these polygons and give a sign to them. The PGM provides a correct characterisation of vertices of any type, from basic convex and saddle types to complex mixed vertices, which have both positive and negative curvature in them.Another contribution is a visualisation program developed to show the PGM using 3D computer graphics. This program helps in the understanding and analysis of the results provided by the numerical computations of curvature. It also provides interactive tools to show the detailed information about the curvature of vertices.Finally a polygon simplification application is used to compare the curvature measures provided by the Angle Deficit and PGM methods. Various sample meshes are decimated using both methods and the simplified results compared with the original meshes. These experiments show how the TAC can be used to more effectively preserve the shape of an object. Several other applications that benefit in a similar way with the use of the TAC as a curvature measure are also proposed
    corecore