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Abstract

The work in this thesis is concentrated on the study of discrete curvature as an important
geometric property of objects, useful in describing their shape. The main focus is on the
study of the methods to measure the discrete curvature on polyhedral surfaces. The curva-
tures associated with a polyhedral surface are concentrated around its vertices and along
its edges. An existing method to evaluate the curvature at a vertex is the Angle Deficit,
which also characterises vertices into flat, convex or saddle. In discrete surfaces other
kinds of vertices are possible which this method cannot identify. The concept of Total
Absolute Curvature (TAC) has been established to overcome this limitation, as a mea-
sure of curvature independent of the orientation of local geometry. However no correct
implementation of the TAC exists for polyhedral surfaces, besides very simple cases.

For two-dimensional discrete surfaces in space, represented as polygonal meshes, the
TAC is measured by means of the Polyhedral Gauss Map (PGM) of vertices. This is a rep-
resentation of the curvature of a vertex as an area on the surface of a sphere. Positive and
negative components of the curvature of a vertex are distinguished as spherical polygons
on the PGM. Core contributions of this thesis are the methods to identify these polygons
and give a sign to them. The PGM provides a correct characterisation of vertices of any
type, from basic convex and saddle types to complex mixed vertices, which have both
positive and negative curvature in them. |

Another contribution is a visualisation program developed to show the PGM using 3D
computer graphics. This program helps in the understanding and analysis of the results
provided by the numerical computations of curvature. It also provides interactive tools to
show the detailed information about the curvature of vertices.

Finally a polygon simplification application is used to compare the curvature measures
provided by the Angle Deficit and PGM methods. Various sample meshes are decimated
using both methods and the simplified results compared with the original meshes. These
experiments show how the TAC can be used to more effectively preserve the shape of an
object. Several other applications that benefit in a similar way with the use of the TAC as

a curvature measure are also proposed.
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Chapter 1

Introduction and problem statement

The shape of an object is an important geometrical property to differentiate it from other
objects. The human eye is trained to recognise shapes, but for some computational appli-
cations it is necessary to give a numerical value to the shape of objects. The curvature is
a measure that describes the shape of curves and surfaces. Loosely speaking, it describes
how a curve differs from a straight line and how a surface in space differs from a plahe. If
a curve is nearly straight, its curvature will be close to zero, while if it has a pronounced
bending, the curvature will be larger. In the most géneral terms, curvature can be seen as
a function of the angles between tangent lines to a curve at different points.

The theory of curvature for smooth surfaces is already well established, in the realm of
differential geometry. It involves definitions of curvature based on the 1% and 2"¢ deriva-
tives of the underlying surface, which can be represented in a parametric or functional
form. This requires a certain degree of continuity (at least C?) of the surfaces. However,
many natural shapes are non-regular, and in particular the computer representations of
objects very often lack the required smoothness.

Various methods to extract the curvature of discrete surfaces have been in development
in recent times. The initial attempts tried to approximate the discrete data by a smooth
surface, and then use partial differential equations to extract geometrical properties. This
approach, however, is complex and requires conversions between smooth and discrete
input and output. Methods that apply directly to discrete surfaces are needed. In the
last decades several attempts have been made to develop discrete methods that would be
capable of dealing with non-regular objects. Among these methods are adaptations of
the concepts of the theory of polyhedral metrics and non-regular surfaces (Aleksandrov
and Zahlgaller 1967), (Banchoff 1970), (Burago 1970), (Brehm and Kiihnel 1982) and
(Aleksandrov and Reshetnyak 1989). A new method to evaluate (discrete) Mean curvature
has been proposed in (Bobenko 2005).



This thesis concentrates on the study of the discrete analogue of Total Absolute Cur-
. vature. It deals with the theoretical background and computational algorithms to compute
and evaluate the curvature of discrete objects. Based on the concept of orientation a sign
can be given to the curvature at every point. However, a drawback of the signed curvatures
is that positive and negative curvatures will cancel each other out, thus hiding important
features of the object. Under this consideration all closed surfaces of the same genus
possess the same global curvature measure, regardless of their geometric complexity (i.e.
how are they embedded in space).

The concept of Total Absolute Curvature refers to the consideration of the changes in
the turn of a curve at a point or in the walk around a point on a surface, which can be
expressed by using the concept of orientation. This concept has been studied before in
(Brehm and Kiihnel 1982) and (Kuiper 1970). The absolute value of the angles provides a
more complete representation of the underlying geometry. The Total Absolute Curvature
of a curve is a global property, which can describe how non—convex an object is. It is an
important fact that it reaches its minimum value with convex curves, .While non—convex
curves will have larger curvature values.

In computer science, objects are represented as discrete approximations of real sur-
faces. These are obtained from sampled data that represent the real object and only con-
sist of a reduced and limited amount of interconnected points (known as vertices). While
vertices have a direct correspondence to points on the actual surface, thé structures that
link them are simplified approximations of the shape. Discrete approximations of curves
are composed of vertices and the edges that connect them. Closed curves in the plane
are analogous to planar polygons. Surfaces are represented in discrete form as polygonal
meshes, consisting of vertices, edges, and faces that make up the surface delimited be-
tween edges ahd vertices. These discrete representations do not possess the same degree
of continuity as their smooth counterparts. This affects how the curvature can be mea-
sured, and demands the implementation of analogous methods that provide equivalent
results to those for smooth objects.

The concept of curvature for non-regular curves and surfaces has been established in
(van Rooij 1965) and (Aleksandrov and Zahlgaller 1967). With the prevalence of com-
puters, the study of geometry for discrete surfaces has gained importance. Research on
discrete curvatures is of growing interest in geometric modelling (an overview is given in
(Alboul 2003)). '

However there are particular considerations to make duririg the transition from smooth

to discrete methods. In the smooth case the curvature measures create a characterisation



of the surface into two types, according to the sign of the local curvature, either positive
or negative. The regions of positive and negative curvature are clearly identified and never
overlap. In contrast, discrete surfaces have features which are not found in their smooth
counterparts, for instance, vertices that incorpdrate both positive and negative curvature.
We will refer to such vertices as mixed vertices. Because of these cases, methods that
are direct analogues of those for smooth surfaces are inadequate in dealing with all kinds
of polyhedral surfaces. This is the case with the Angle Deficit method for measuring
the analogue of the (integral) Gaussian curvature around a vertex. It can provide a char-
acterisation of the vertices by positive or negative curvature, in accordance with smooth
surfaces. But to correctly characterise different vertex types it is necessary to develop
methods aimed directly at discrete surfaces. This will present a wider array of vertex
types, all of which will be analysable.

The research question that arises is how to recognise these vertices, and to obtain
reliable computations of their curvature. This can be presented as our main research

topic:

e To find a procedure that correctly measures the curvature for the different types of

vertices in a discrete polyhedral surface.

In order to fulfil this task we propose a discrete version of the Gauss Map, called
the Polyhedral Gauss Map. We study the structure of the Polyhedral Gauss Map in all
detail, as an extension of the method of Total Absolute Curvature. This will permit us
to measure curvature and characterise the geometry of vertices of any type, including
complex mixed vertices, vertices with self-intersections in their neighbourhoods and some
kinds of degenerate vertices. The proposed method considers the connectivity of the
neighbourhood of the vertex. It measures not only positive and negative curvature parts
incorporated at the vertex, but also separates these parts in atomic subparts that provide
a complete characterisation of the complex geometry around the vertex. A polyhedral
Gauss map has been used by some authors to underline the curvature of a vertex (Kilian
2004), (Maltret and Daniel 2002), but its application has been limited to simple cases, and
without the detailed study of its structure.

The vertex characterisation is also important in determining a region segmentation of

‘a surface, where vertices of the same curvature sign are grouped together in represen-
tative regions. This is used in various applications to identify the different parts of an
object, such as the nose in a human face or the wings of an aeroplane. The considerations
previously presented for the Total Absolute Curvature allow a more complete region seg-

mentation that includes the areas where positive and negative curvature are both present.
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The research questions investigated in this thesis can be extracted from the previous

discussions as:

1. To what extent is a discrete curve or surface characterised by its Total Absolute
Curvature? |

2. How can the Total Absolute Curvature of a discrete surface be measured with a
discrete version of the Gauss Map?

This problem can be subdivided as follows:

(a) How to recognise all the curvature components of a vertex.

(b) How can the correct curvature measure for all possible vertices, including
non—manifold ones, be obtained?

(c) Can the curvature measures of individual vertices provide a classification for

regions of the mesh?

3. How can practical applications benefit from the additional measurement accuracy
provided by Total Absolute Curvature? We explore the following applications as

test environments:

(a) Curve reconstruction (Amenta et al. 1998), (Althaus and Mehlhorn 2000)
(b) Surface characterisation (Li and Gu 2004)

(c) Face recognition (Grodon 1991), (Tanaka et al. 1998)

(d) Terrain navigation (Falcidieno and Spagnuolo 1991), (Lee et al. 2001)
(e) Decimation: (Schroeder et al. 1992), (Kim et al. 2002)

The research presented in this thesis is considered from a Computer Science point of
view, while presenting all necessary mathematical background. Most proofs given are
of pure geometric nature. Visualisation and graphical illustration of results represent an
important part of the thesis. The computer and advanced computer graphics are central

components in this work.

1.1 Aims of the research project

From a Computer Science point of view, the analysis of curvature presents various new
challenges: complex objects are composed of thousands or even millions of vertices,
each of which has to be analysed individually. The practical aim of the project is to
obtain algorithms that can perform curvature measures of polyhedral surfaces, based on
simple geometrical properties and calculations. The term polyhedral surface is used in
a generalised sense, which includes self—intersecting and non-manifold surfaces. The

curvature of any kind of vertex should be correctly evaluated.
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A second aim for the project is to develop computer graphic techniques into a tool to
visualise an abstract concept, such as curvature, in order to better understand its behaviour.
The elements that affect the curvature of a vertex are difficult to imagine, or to draw
in the plane. A three—dimensional visualisation permits a proper understanding of the
properties of the vertices and surfaces. The visualisation can reflect immediate changes in
the object and its curvature and provides interactive tools to aid in analysing the geometric
properties.

We first study the concept of curvature on closed planar polygonal curves (polygons)
and later on polyhedral surfaces. Initial analysis of curvature is done on curves lying in the
plane. This research provides insight on how the shape and the curvature are related, and
outline the properties of the Total Absolute Curvature. Analysis of planar polygons also
provides a starting point for the concept of the Gauss Map, as a graphical representation
of the measure of Total Absolute Curvature.

The research on planar curves also provides a good starting point for studying the
properties of curvature in the case of polyhedral surfaces in three dimensions. However
in this case the ordering and linking of the data are not unique, even for the simplest
cases. While for a planar polygon the segments that join the vertices can only have one
orientation and direction, this is not true for faces in 3D. This generates several more cases
to consider when stepping up to a higher dimension. Some of the curvature properties
observed on planar polygons can be immediately translated to three—dimensional surfaces.
Others require a certain extension to function properly. The work on this thesis will
explain the relationship between the two cases.

The main part of the research deals with the computation of the Polyhedral Gauss
Map of vertices in a polyhedral surface. The Gauss Map of surfaces is well known, and
has received some attention in the past (Banchoff et al. 1982), (Rodriguez and Rosenberg
2000) and (Grinspun and Schréder 2001), however it has never been studied extensively
for all cases of polyhedral vertices. The curvature of a polygonal mesh is obtained from
the spherical representation of the features of each individual vertex. This spherical rep-
resentation is the Gauss Map, and is based on the normal vectors of the faces around
each vertex. However, previous attempts at finding the Gauss Map of vertices have been
limited to the simplest configurations available. Other more complex vertices are gen-
erally ignored or considered impossible to analyse (Lowekamp et al. 2002), (Yamauchi
et al. 2005). The methods presented in this research seek to obtain an accurate measure-
ment of curvature for all possible kinds of polyhedral surfaces, including non—convex and

non—-manifold surfaces.



An innovation of the Polyhedral Gauss Map method is that it allows the ‘separation’
of positive and negative curvature ‘parts’ incorporated at a polyhedral vertex of a complex
geometry, and thus provides a complete characterisation of the shape of a vertex. Positive
and negative curvature ‘parts’ are represented as spherical polygons on the surface of
the sphere. The difficulty lies in separating the spherical polygons and determining their
corresponding sign. The signed curvatures allow for clear identification of vertices that
would not be valid according to other methods, or that would not be possible to correctly
distinguish. Also, because of the use of the novel methods, more features of a vertex can
be recognised.

The final objective is to indicate practical applications where the curvature informa-
tion is useful to identify, classify or modify the polyhedral representation of an object.
The computations required for the Polyhedral Gauss Map are relatively simple and fast,
allowing for the method to be used in a variety of applications. Some examples are feature
recognition, face recognition, computer vision, terrain navigation, mesh optimisation, and
others.

We implement an application on mesh simplification using the Polyhedral Gauss Map
to measure curvatures and assign an importance weight to vertices. Those with a small
weight are removed from the polygonal mesh, in a way that will preserve the original
shape of the object. This experiment provides a numerical proof that the Polyhedral Gauss
Map method provides better curvature measures with respéct to the Angle Deficit method.

The main research objectives of this thesis can be summarised as follows:

o Study the properties of the Total Absolute Curvature on planar polygons

Obtain accurate measurements of the curvature of vertices in a polygonal mesh

Characterise the vertices according to their curvature signs

Visualise the Polyhedral Gauss Map of vertices using computer graphics

Apply the curvature measures and characterisation for practical applications and

further processing of the data, such as optimisation, simplification or subdivision

1.2 Experimental methodology

The experiments presented in this research were performed using two main programs,
developed to test the theoretical principles and to have a visual point of reference for
the results. The applications were created using the C programming language and the
OpenGL libraries for graphical display. The first such program is designed to fit curves

over point clouds on the plane, and is called reconstructor. Its purpose is to study



how curvature could be used to determine the usefulness of curve-fitting algorithms. An
example of the results produced by this program is shown in Figure 1.1. Several curves
are generated from each dataset by minimisation of various parameters. The curvature of

the generated curves is used at later stages to evaluate the results.

L4 ¢
.
¢ ¢
. . .
L4 ¢
.
. .
(a) Point cloud (b) Reconstructed curve

Figure 1.1: Example of curve-fitting using the reconstructor program.

The second program is focused on finding the curvature of vertices in a polyhedral
mesh by means of the Polyhedral Gauss Map and is called gaussMap. Figure 1.2 ex-
hibits a screenshot of this program showing the Polyhedral Gauss Map of a vertex in a
simple mesh. It incorporates the concepts of Total Absolute Curvature to obtain correct
measurements for every vertex and for whole surfaces.

The gaussMap program is later extended to perform mesh simplification, using the
curvature measures to select vertices to be removed from the mesh. This second version of
the program is called decimator, and retains the same basic functions of gaussMap.
Figure 1.3 shows the results of this implementation of polygon simplification.

Various weighted combinations of Total Absolute Curvature and areas are used to

measure the importance of vertices to the shape of the object. The decimated meshes

ihowing vert'
:urvature (PC 0.890728

Figure 1.2: Example of Polyhedral Gauss Map of a vertex from the gaus sMap program.



(a) Original (16,944 vertices)

(b) 97.1 % decimation (494 vertices)

Figure 1.3: Example of polygon simplification with the decimator program.

obtained with various parameters are compared using the Metro program (Cignoni et al.
1998), to evaluate their usefulness and quality.

Additional programs developed include scripts in Per/ that generate source data for
testing, and the ob jViewer program, created to visualise polyhedral meshes stored in
the OBJ format. This file format is also employed by gaussMap and decimator

programs.

1.3 Main research contributions

In general terms, the most important contribution of this research consists of providing a
pure geometric background and developing computer algorithms to measure and visualise
the curvature of discrete objects. These new methods are simple to compute and do not
require the evaluation of computationally expensive differential geometry procedures.

A list of contributions is presented here and all of them will be explained extensively

in later chapters.

» Computation of the Polyhedral Gauss Map for vertices in a polyhedral mesh



— Algorithms to detect the intersection of arcs on the surface of a sphere

— Algorithm to split a series of ordered arcs on a sphere into non-intersecting
spherical polygons

— Methods to determine the orientation of a spherical polygon related to a vertex

— Identification of positive and negative components of the curvature of a vertex

— Classification of vertices into the following types: flat, convex, saddle and
mixed

— Computation of complete curvature for any kind of vertex, including non-

convex and non—manifold vertices
e Visual display of the Gauss Map using OpenGL

— Methods to draw the spherical indicatrix of vertices
— Algorithm to draw spherical triangles in OpenGL using clipping planes
— Algorithm to triangulate spherical polygons for display in OpenGL

e Use of Total Absolute Curvature for polygon simplification

— Proposal of new vertex weight parameters, based on curvature and areas, to
determine the importance of a vertex

— Use of Total Absolute Curvature to optimise local triangulations by edge flip-
ping
e Algorithms for curve reconstruction from a disorganised point cloud in the plane

— Algorithm to construct curves with one ‘deviation’ from the con\;ex hull

— Algorithm to construct curves with multiple ‘deviations’ from the convex hull

— Evaluation of multiple minimisation criteria for vertex insertion in recon-
structed curves. Criteria based on geometric parameters, such as local or
global curvature, distances and combinations of them '

— Methods to detect and correct self—intersecting polygonal curves

1.4 Organisation of the thesis

The following is the description of the contents of each chapter. Chapter 2 is an intro-
duction to the main concepts of Total Absolute Curvature. The main contributions of this
thesis are included in Chapter 3, Chapter 4 and Chapter 5. A relevant literature review is
given at the beginning of each corresponding chapter.

The structure of the thesis is the following:
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Chapter 2 presents some basic geometrical concepts and theoretical background used
during the thesis. Afterwards it introduces the concept of Total Absolute Curvature
for polygonal curves in the plane, demonstrates its validity and its relation with the

spherical image of a curve, as a precursor of the Gauss Map.

Chapter 3 presents the curvature measures for smooth surfaces, including the Gauss
Map, and explains analogous methods for discrete surfaces. It presents a descrip-
tion of the Total Absolute Curvature of vertices, and the characterisation of vertices
into four basic types. The method to compute the Polyhedral Gauss Map is intro-
duced, and its validity in evaluating the Total Absolute Curvature is demonstrated.

Finally this new method is compared with the Angle Deficit method.

Chapter 4 presents the computational algorithms developed to generate the Polyhedral
Gauss Map of a vertex. It describes the process of constructing the spherical poly-
gons and extracting the curvature information from them, including all the special
cases and particular considerations that need to be observed. The chapter presents

. the results of the algorithm on various types of vertices, and a comparison of the

characterisation obtained with this and the Angle Deficit method.

Chapter 5 describes the techniques used to display the Polyhedral Gauss Map in 3D
using OpenGL. ' |

Chapter 6 shows a practical application of the Polyhedral Gauss Map used in polygon
simplification. A vertex decimation program is used as a test platform to produce
simplified meshes with various curvature parameters. The results are compared
to determine the effectiveness of Total Absolute Curvature to guide simplification

algorithms.
Chapter 7 contains the conclusions and further research directions.

Finally, in Appendix A we present additional experiments on the measures of To-
tal Absolute Curvature for planar polygons. This section deals with a problem that is
loosely related to the main research. It describes in detail an application developed for
curve-fitting, which incorporates two different algorithms. The curves generated by the
minimisation of various parameters are evaluated and compared by means of their Total

Absolute Curvature.
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Chapter 2

Geometric concepts and discrete
curvature in two dimensions

2.1 Introduction

Curves are fundamental objects in geometry, that can be used to build more complex
objects of any shape. In this chapter we consider curves that lie only in the plane R?.
The concept of curvature is a common geometric property of curves that describes how a
line in the plane bends at any given point. Research about the properties of curvature has
been very extensive, especially in differential geometry (van Rooij 1965), (Kuiper 1970),
(Ujiie and Matsuoka 2003), (Sullivan 2006). For smooth curves, the curvature can be very
accurately represented by the rate of change of the angle between tangent lines at different
locations of a curve. Obtaining the curvature of a single point p of the curve requires the
tangent lines at two other points at either side of p. Making the distance between these
points and p as small as possible we get a close approximation of the curvature at p. Thus
the curvature is obtained as a limit, involving the second order derivatives of the curve.

An additional property associatgd to curvature is the direction of the change in the
tangents, used to give a sign to the curvature at any given point, classifying it as positive
or negative. This direction is referred to as the orientation of the curve at a vertex.

We focus on the representation of curves most commonly used in computer science,
as a piecewise linear approximation composed of vertices and edges. We refer to this
representation as a discrete curve. Vertices are points sampled from a smooth curve or
other data source, and are defined by their coordinates. The sampling frequency of these
points depends on the origin of the information, which can provide vertices at regular
intervals or at important feature points of the original object. Edges are straight line seg-
ments that connect the vertices in a certain order, and provide the shape of the information
represented by the isolated points.

The concepts of curvature can be translated from the smooth to the discrete case with
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a few considerations. In the case of a discrete curve the changes in curvature occur ex-
clusively at the vertices, since all the points of a single edge have the same curvature,
equal to zero. We can determine that, for a polygonal curve, the curvature at a vertex is
measured by the angle between the two edges incident on it. Integral curvature in the case
of a smooth curve can be expressed as a turn, i.e. the angle between tangent lines at two
points on the curve. Whereas in the case of a polygonal curve is just a turn of the curve,
manifested by the angle at a vertex (Aleksandrov and Reshetnyak 1989).

In this research the study of the two—dimensional version of curvature provides useful
insights for research on triangulations in three—dimensional space: the requirements for
computing curvature, its relationship with the shape of the object, and identification of the
special cases that require more particular treatments. Note also that the study of polygonal
curves with respect to their total absolute curvature is also interesting for its own sake, as
the total absolute curvature is related to the global properties of the curve and might be
used to characterise diverse curve profiles (Ujiie and Matsuoka 2003).

This chapter begins by presenting the basic theoretical concepts, (mainly of geomet-
rical nature) to be used in the consequent chapters. Secondly we deal with the analysis of
curvature properties and derive the discrete method to measure the curvature of a polygon.

Finally the concepts described are explained in the context of curve reconstruction.

2.2 Basic geometric concepts and computational implementa-
tions

This section describes several basic geometric concepts and their implementation in the
computer programs developed. We will refer to a piecewise linear approximation of a
smooth curve as a discrete curve, that is composed of points or vertices and line segments
or edges connecting vertices together. Let a vertex be a tuple v = (z,y) € R2. Given
a collection of vertices V = {v;;¢ = 1,2,...,n}, we define a curve P(V) as a planar
polygon that connects all vertices v; € V in a specific order. An edge can be represented
as a line segment connecting two vertices, for example the edge between vertices v; and
v, is denoted as 175. The two vertices are known as the endpoints of the edge.

We will additionally provide the definitions for operations on vertices and vectors
in three dimensions, where a vertex is denoted with v = (z,y,2) € R3. The vector
operations can also be carried out for vertices in the plane, by setting the third coordinate

equal to zero, in order to maintain the consistency of all results.
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Vector from two vertices

Given two vertices v; = (x1,¥1,21) and v = (z2,Ys, 22) we can define a vector v =

(u, v, w) with origin at v; and endpoint at v, as:
V=1 — v = (Ta— T1,Y2 — Y1, 22 — 21)- (22.1)
The magnitude of a vector v = (u, v, w) is obtained as:
[v| = Vu? + 0% + wl. (2.2.2)

A vector is said to be normalised if its magnitude is equal to 1. This is also called a
unit vector. The method to normalise a vector is to divide each of its components by the

magnitude of the vector, as such:

v = (i, —”-,1”—) . (2.2.3)
v’ |v|” |v]

Dot product of two vectors

The dot product is a binary operation defined over two vectors that returns a scalar value.

Given two vectors vy = (uy, V1, wl') and ve = (ug, v2, W), their dot product is given by:
Vi - Vg = Ujlg + V1V + W Ws. 224)
An alternate definition of the dot product is:
vy - Vo = |vy]||va| cos b, (2;2.5)
and from this we can find the angle between the two vectors as:
0 = arccos (M> . (2.2.6)
[val|va|

The angle @ is limited to a range between 0 and 7 radians. It can be used to obtain the

relative direction of the vectors with respect to each other.

Cross product of two vectors

The cross product is a binary operation defined over two vectors that returns another
vector. The resulting vector will be normal to both original vectors, that is, it will be at

right angles to both. Given the two vectors v; and v, their cross product is given by:

vi X Vo = ((vjwy — wqva), (w1 — wws), (W1ve — viug)).  ~ (2.2.7)
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Angle at a vertex

We measure the angle at a single vertex based on the dot product of two vectors. To know
the angle € at vertex v;, we need its two neighbour vertices v;_; and v; ;. We define two
vectors vy = v; — v;_1, and vo = v;41 — ;. Then the cosine of the angle between the
vectors is obtained from Equation 2.2.6: '

Vi - V2

cosf = ——=.
[vi||va]

(2.2.8)

The resulting cos 6 will have a value between —1 and 1, and can be used to determine
the relative positions of the points v;_; and v;,; with respect to v;. If cos@ = 0 then the
vectors vy and v are at right angles. If cos § = 1 the vectors are collinear and point in the
same direction. If cos @ = —1 the vectors are collinear but point in opposite directions. In

general if cos § < 0 the vectors point in opposing directions with respect to v;.

Distance from a vertex to a line segment

We establish a particular constraint for computing the distance from a vertex to a segment
as a special case of measuring the distance from a vertex to a line. Following the notation
for the Euclidean distance between two vertices as d(v1, v;), we denote the distance from

a vertex v to a segment ;11 as d(v, Ui 171).

Definition 2.2.1. Given an edge e = V;7;11, we can sweep e along a line perpendicular
to itself. We define the sweep region R as the area in 2D space that is covered during the
sweep.

Using this definition we can consider two different cases to measure the distance from

a point v to a segment e:

e If v lies inside of the sweep region R, then the distance is measured as the length
of a segment of a line perpendicular to e that passes through the vertex v. This line
will intersect e at a new point v,.. The distance is measured from v to v,.

o If v lies outside of R,.then the distance is measured from v to the closest endpoint

of e.

In Figure 2.1 vertex v is inside of the sweep region of the segment e = 37y, while vertex
v, is not.

For the computational implementation of this distance two vectors are created to iden-
tify whether the point v is within the sweep region R of the segment e. One vector is

parallel to e and the second vector goes from any one of the endpoints of e to the point v.
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Figure 2.1: Distance from a point to a segment. Sweep region R shown in grey.

This is explained using the vertices in the example of Figure 2.1, the two vectors would

be: v = v4 — v3, and vy = 11 — v3. We obtain the dot product of these two vectors as:
a=vjy-Vs. (2.2.9)

If a < 0 then v lies outside of R. If a = 0 then v lies on a line perpendicular to e that
passes over the endpoint v3. In both of these cases the distance from v to e is measured -
as the distance from v to vs.

Next we compute the dot product of the vector v; with itself:
b= Vi - Vi. (2.210)

If b < a then v is outside of R. If b = a then v lies on a line perpendicular to e that passes
over the endpoint v4. In both of these cases the distance from v to e is measured as the
distance from v to vy.

Otherwise, if b > a then v is located inside of R in a line perpendicular to e that

intersects the segment at a new point v,. The coordinates of this new point are obtained

by:
a

Uy = g — (5) vi. @211

The distance from the point to the segment is measured as the Euclidean distance from

point v to the new point v,, as shown in Figure 2.1.

Orientation

Any simple closed curve can be assigne(d an orientation, depénding on the direction the

curve is traversed. In general, if a walk along the curve keeps the interior of the curve to
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the left, the orientation is positive, and negative if the interior is to the right. This can also
be expressed in terms of the right hand rule for a planar graph. Imagine that, using the
right hand, one follows the direction of the curve with the index finger, while the middle
finger points to the interior of the curve; if the thumb points upwards, the orientation is
positive; if the thumb points downwards the orientation is negative.

In a smooth curve, the orientation at any given point is defined as the direction in
which the curve turns at that point. According to (Borowski and Borwein 2002), this ori-
entation can be either Clockwise (CW), Counter—Clockwise (CCW) or Collinear (COL).
The same definition can be applied in the case of a planar polygon, using the angle formed
by the two converging segments at that point. This concept of orientation can also be as-
signed to a pair of vectors that originate at the same point.

In any planar polygon P(V), the orientation at point v; is denoted with p(v;) and
it is determined by using the two neighbouring points: v;_; and v;,;. The three points
have coordinates: v;_; = (z;-1,¥i-1), ¥i = (24, ¥;) and V;11 = (Zi41, Yi+1), as shown in

Figure 2.2. At vertex v; the orientation p(v;) is defined as:

cw, if r(y) <0,
p(v;) =4 COL, if r(v)=0, (2.2.12)
CCW, if r(u) >0,
where r(v;) is given by the formula (Crépeau 2004):
(Vi) = (¥ — ¥i-1) (@41 — 3)) — (@1 — ¥:) (% — Ti1))- (2.2.13)

Vi1

orientation

Figure 2.2: Finding the orientation of a vertex.

The whole polygonal curve P(V) also has an orientation, determined by the indi-
vidual orientations found for each of the vertices. This is obtained by adding the signed
angles at the vertices, where the sign will be determined by the orientation at the corre-

sponding vertex.
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For the implementation of the computation of orientation there is an issue that must
be considered. The rounding of floating point numbers done by the computer may lead to
problems when calculating the orientation of three points, since it may erroneously find
that two points are collinear when they are not, or vice versa. This problem may severely
impair the results, because many operations and comparisons used in the implementation
are based on orientation. For this reason, a rounding tolerance is introduced, to accept
very small values to be considered equal to zero, and thus allowing the program to have

more consistent results, at the expense of precision in the measurements.

Intersection of segments on a plane

The edges of a curve can intersect, and it is necessary for our purposes to identify when
these intersections occur. In the current implementation the exact location of the inter-
section of two segments is of no importance. Orientation can be used to detect segment
intersections, by comparing the orientation of the points of one segment with respect to
the other, and vice versa. Since the vertices of two segments may not be consecutive, we
can refer to the orientation of an arbitrary vertex v, as p(v, V,, V), Where the orientation
is determined by the two segments 77, and 7,7, in that order. There are two cases to
consider:

General Case: Given two segments 777, and 737, they will intersect if

p(v1,va,v3) # p(vh, Vo, v4) (2.2.14)
and

p(vs,va, 1) # p(v3, vg, ). (2.2.15)
The segments shown in Figure 2.3 intersect each other, while those in Figure 2.4 do not
intersect, since the orientations p(vs, v4, 1) and p(vs, v4, Vo) are equal.

Special Case: If the orientation for all the points is collinear, then both segments
lie in the same line. To test if there is an intersection of the segments we measure the
Euclidean distances from v to the other vertices v, v3 and v4. If any of the points v3 or
vy is closer to v; than v, and in the same direction, then the segments overlap and there is
an intersection, as shown in Figure 2.5, where d(v1, v3) < d(v1, 1%).

In some situations, it is necessary to compute the intersection of two segments includ-
ing the endpoints of the segments, while sometimes the intersection at the endpoints is
not considered. In these latter cases an extra comparison is done to verify that none of
the endpoints of a segment is equal to those on the other segment. There are thus two
functions to test for an intersection of two segments, one which includes the endpoints

and another which does not.
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A

p(v3, vy, 1) = CCW
p(v3, vy, 1) = CCW ’

Figure 2.4: Non-intersecting segments.

V V3 Vs Vy
° . - °
—d(11, Vp) —

Fd(vy,v3) A

[ d(v1,vy) |

Figure 2.5: Self-intersection of collinear segments.

Convex hull

The convex hull of a dataset V is a curve that joins a certain subset V oy of the vertices
in V. We call this the CH-curve. Its requirement is that any line segment joining two

points in the dataset will lie in the interior of the convex hull (de Berg et al. 1997) (see
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'Figure 2.6).

Figure 2.6: Convex hull of a point cloud.

The convex hull of V can be computed by using the orientation of the points v; € V.
An important property of the convex hull is that all of its points have the same orientation,
both with respect to the rest of the convex hull, and to the points inside (Crépeau 2004).
Under these considerations, the computational implementation of the algorithm to obtain

the convex hull of a dataset is described as follows:

e Initially all points will be in a'list A, of remaining points, and will be deleted from
itif they are identified to belong to the convex hull. Since the points in the list are
already ordered by increasing value of the X coordinate, the first point will always
belong to the convex hull, being the vertex at the left-bottom. This point is used as
the first reference point v;,.. |

e To locate the next point to be added to the convex hull, all points in A, are tested
against each other, by using orientation. The value for the orientation of each point
v; is obtained from two line segments, one going from v,. to v;, and another segment
from v; to any other point v;. See Figure 2.7(5).

¢ The point v; will be considered to belong to the convex hull if the orientation with
respect to all other points in /\,.' is Counter—Clockwise, as shown in Figure 2.7(b), or
when it is Collinear with other points that also belong to the convex hull. In the case
of collinear points, the one closest to the current reference point is considered first.
In this way, all of the points that lie on the convex hull will be included, regardless
of whether the points are vertices of the polygon or not.

e Each time a new point is added to the convex hull curve, it becomes the new refer-
ence point ¥, and it is used to test the remaining points, as in Figure 2.7(c). It is .
also removed from the list A, and inserted at the end of the list A, that corresponds

to the convex hull.
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e This process continues until the next point found to be inserted into the convex
hull is equal to the first point used as a reference point. At that moment the curve
has been closed, and all the remaining points are inside of the convex hull. The
program stops evaluating any more points when this condition is reached, otherwise

it would continue and produce spiral-like open curves that include all the points in

the sample.

(a) Vertex v; rejected (b) Vertex v; accepted

(c) Continue with new Vp

Figure 2.7: Selection of vertices belonging to the convex hull of a dataset, based on orientation.

2.3 Notions related to the concept of curvature
2.3.1 Formulae and definitions

The definition of the curvature of a curve is in general given under the assumption that
the curve is of C2—class, so that the 15t and 2"¢ derivatives are continuous. However, the
notion of curvature can be generalised to the class of curves which possess continuous
second derivatives except at a finite number of points where a jump discontinuity in the

first derivative can occur. Such a curve can be seen as the sum of a finite number of
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C?—curves, joined together at n discontinuity points sg, sy, ..., s,. Figure 2.8 shows a

diagram of a curve of this kind.

S1 S2
So 53

Figure 2.8: A curve with discontinuity points s; and ss.

We can introduce the exterior angle a(s;) formed by the right and left tangents at
a point of discontinuity s; (van Rooij 1965). The total curvature o of the curve is then
defined as the sum of the integral curvatures k(s) of the smooth segments, plus the sum
of the exterior angles at all discontinuity points. We then have the following formula for

the curvature of an open curve:

Sn n—1 Sit1 n—1
/QM=Z/ k(s)ds +»  afs;) (23.1)
s0 =0 Vs =1

where ) a(s;) is the sum of all exterior angles enclosed by the right and left tangents at
points of discontinuities between sq and s,,. .

In the case of a discrete curve the points of discontinuity are its vertices, while the
smooth curves are straight line segments that have curvature equal to zero. (Sullivan
2006) gives a description of some properties of curvature and the relationship between
the smooth and discrete cases. We then have that for the discrete case the curvature is
reduced to the sum of the angles at the vertices. Let us denote with a(v;) the exterior

angle at the vertex v; of a curve. Then the expression

n

w=> a) (23.2)

i=1
represents the total curvature of a closed polygonal curve. If this curve is the boundary of
a closed simple polygon, w is always equal to 27 (an elementary case of the Gauss-Bonnet

theorem). The following expression:
= la(w)| (2.3.3)
i=1

is called the Total Absolute Curvature of a curve, abbreviated as the TAC. An important
fact is that @ reaches its minimum value 27 on convex curves (polygons). We can show
this by using a rectangle, as depicted on Figure 2.9. The angles in each of its four vertices

are equal to 7/2, making the total sum of the four angles equal to 27.
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Figure 2.9: The TAC of a convex curve is always equal to 2.

The convex hull of any curve is by definition a convex curve, and thus has a curvature
equal to 2. Any concave vertex in the curve will increase the TAC and make it larger
than 27. So we have that for any given simple closed curve the following hold:

n

w= Za(u,-) =27 (2.34)
i=1
and: n
&= lo(w)| > 2. (2.3.5)
i=1

Therefore for a non—convex curve the excess in the Total Absolute Curvature with
respect to 27 can be used as a measure of deviation from the convex curve. Given the
dataset V, we take as a convex curve of reference the boundary of the convex hull of the

data, (referred to as the CH—curve).

Definition 2.3.1. We call a deviation region or simply a deviation the connected vertices
and edges of a curve P(V) that do not belong to the convex hull of the dataset V. Every
deviation is connected to the convex hull at both of its ends, at what we call deviation
vertices.

[

We want to determine the measure of curvature added to a curve P(V) by its devia-
tions with respect to the CH—curve. For the problem of curve reconstruction, if our aim is
to generate curves of minimum curvature, it is clear that we should minimise the amount
of curvature contributed by reflex vertices. Let us make this assumption more precise.

It is possible for a discrete curve to have self-intersections, but in this chapter we
presume that polygonal curves represent boundaries of simple polygons, i.e. are not self-

intersecting. Furthermore we consider a simple polygonal curve P(V) as a set of line
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segments 7;7;;; that join the vertices vy, vs, . .., V,_1, ¥, in a specific order. We consider
only closed curves, therefore the line segment 77,777 belongs to the curve P(V). For each

individual vertex we define:

Definition 2.3.2. The star of a vertex v; in a curve is the union of the vertex and its two
adjacent line segments 7;_17; and V;V; 1.

In the following explanations of the measurement of the Total Absolute Curvature we
will consider the absolute values of all the angles, both convex and concave (reflex). We
designate the vertices that lie on the CH—curve with Vg, and with y;,2 = 1,...,q the

exterior angles at these vertices with respect to the CH—curve. It is clear that

q
D yi=2m. (23.6)
i=1

Let us denote with V¢, the convex vertices of P(V) and with aj; j=1,...,rthe

exterior angles at these vertices with respect to P(V), and with V eqex the reflex vertices
of P(V) and with §i,k = 1,..., s, the corresponding exterior angles at these vertices

with respect to P(V); where 7 + s = n. Figure 2.10 shows the location of these vertices

in a polygon.

Figure 2.10: General case with several convex and concave angles.
For a simple closed polygon the following equality holds:
T S
S aj= > B=2m (2.3.7)
j=1 k=1 ’

Since @ = ) a; + Y B, the total absolute curvature of a polygonal closed simple

curve can be represented as

G=2r+2) B (2.3.8)
k=1
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The set of convex vertices Vony can be further split into three disjoint subsets,
namely, the subset V onv—cu Of vertices that lie on the CH—curve and such that their
stars also belong ’to the CH—curve; the subset Vonv—int Of vertices that are convex but
do not belong to the CH—curve; and the subset V ¢onyv_gev Of vertices that lie on the CH—
curve but their stars do not belong to the CH—curve. Vertices of the last type are called
deviation vertices as at these vertices the curve is deviated from the CH—curve. The cor-
responding exterior angles are denoted as o1 = 1,...,t, o/™,m = 1,...,u and
age“, p=1,...,v,respectively. We also have that [ + m + p = r. Obviously, any part of
the curve that is deviated from the CH—curve starts and ends at the neighbouring vertices
of Vconv—dev, since our curve has no self-intersections. Segments that have a deviation

vertex as an end—vertex, but do not belong to the CH—curve, are called deviating segments.

Therefore, Equation 2.3.7 can be rewritten as:

t
Z alCH + i ai;‘t + i age“ - i,@k = 2m. 2.3.9)
=1 m=1 p=1 k=1

Each age“ is equal to v, + 0,; where by 6, we denote the angle at a deviation vertex
of the curve P(V) with respect to the CH—curve, or in other words, the angle between
the deviating segment of P(V) that has this deviation vertex as one of the end—vertices
and the (imaginary) segment of the CH-curve, that would have the same deviation vertex
as one of the end—vertices. We call such an angle a deviating angle, as illustrated in
Figure 2.11.

V3 ' Uy

Vs V1o

vy n

Figure 2.11: Deviation angles in a non-convex curve. The deviating angle at vertex v4 is formed
by the deviating segment 7475 and the (imaginary) segment 7377 belonging to the CH—curve. At
vertex v; the deviation angle is formed by segments Ug7; and 7707g.

The above-mentioned considerations transform Equation 2.3.9 into the following one:

t u v v s
doofH+ > oty > 0,— > fi=2m (2.3.10)
=1 m=1 p=1 p=1 k=1
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The sum 3 _, o + 3°U_ v, can be rewritten as .2, ; and, as shown in Equa-

tion 2.3.6, is equal to 27. Taking this into consideration, we obtain the following expres-

doalt 4y "0,- Y B=0. 2.3.11)
m=1 k=1

p=1

sion:

This expression can be rewritten as:

zu: D 6= B (23.12)
m=1 p=1 k=1

Therefore, to find the curve (or curves) of minimum total absolute curvature among
all curves that span the given data, it is sufficient to minimise either the sum of exterior
angles at reflex vertices or the sum of exterior angles at the internal convex vertices and
the deviating angles.

From Equation 2.3.12 it follows that if the curve does not have internal convex vertices
then the amount of deviation of the curve from the CH—curve is concentrated in deviating

angles, and we can extract the following theorem:

Theorem 2.3.1. The total absolute curvature of a non—convex polygon without self-inter-
sections is equal to the curvature of its convex hull plus the absolute value of the curvature
of the deviation regions.

Proof: We will use a certain property of the sums of the angles around a triangle. From

basic trigonometry we know that in the triangle of Figure 2.12:
B=n—p (2.3.13)

and
B +60,+ 60, =m. (2.3.14)

Substituting to solve for # we have that:
B =0, +0,. - (23.15)

These concepts are used to measure the curvature of the polygon in Figure 2.13. We
observe that: oy = § + 61, g = § + 6, @3 = § and ay = 5. Computing the absolute

curvature of the polygon we have:
O = ajtoytaztas+p

™ ™ s Us
= §+§+§+ol+§+02+ﬂ- (2.3.16)
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Figure 2.12: Relationship between internal and external angles in a triangle.

e

(2]

Figure 2.13: Sum of angles of a polygon with one deviation and no internal convex vertices.

Applying Equation 2.3.15 to the sum of the angles, we get:

(D = 2ﬂ'4—[3'+ 01 +—92

= 2n+0+p0
= 27+ 20, : (2.3.17)
which verifies the result presented in Equation 2.3.8. | |

We must note that deviating angles always appear in pairs and each pair indicates

a deviation of the curve from the reference convex curve. Each deviated part P(V),,
d

conv

d=1,..., f contains in its turn some convex internal vertices V

d
reflex*

(its number may be
equal to zero) and reflex vertices V
Taking into consideration that the reflex vertices may be split into the disjoint subsets,

corresponding to the deviated parts of the curve, we can transform Equation 2.3.8 into:

O=2m+2) > B (2.3.18)



Equation 2.3.12 holds for each deviated part:

ud v‘i Sd
Do+ b= P (23.19)
pi=1 '

md=1 kd=1
We now consider the case when extra vertices are inserted to the polygonal curve. A
vertex v, will be inserted into the segment v;7; 11, creating new segments ;7 and V7 ;.
This will affect the curve by changing the angles at vertices v; and v;,, and adding a new

angle at vertex v,. This is shown in Figure 2.14.

) o(v.)

;

a(y;) a(uzl)

(a) Initial polygon (b) After insertion of vertex v,

Figure 2.14: Changes in the angles of a polygon due to the insertion of a new vertex.

Let us define a convex region Reonyez as @ part V4, Vi1, . .., iy of a curve P(V)
that satisfies the condition that each vertex that belongs to R onve; iS convex, but vertices
vi—1 and v,y 41 are reflex. A concave region Reoncave 18 defined analogously. Both are

illustrated in Figure 2.15.

V3 ol Vse 1P
Vg U7
Vg

Vs
Vg

vy Vy n

(a) Convex region Rconvex (b) Concave region Rconcave

Figure 2.15: Convex and concave regions, shown in grey.

Those segments of a curve whose vertices are of different types (i.e. one is reflex,
and another convex) are called separating segments. For any region we can extend the

delimiting separating non—parallel segments until they intersect. The curvature of the

27



region will be equal to the angle at the intersection point, regardless of the number of
vertices in the region. We call this the incorporated curvature of the region, shown in
Figure 2.16(a).

From the above mentioned we get the following statement:
Lemma 2.3.2. Suppose we construct a curve P1(V) which has g convex regions and h
concave ones. If we add new vertices to these regions in such a way that the number and

type of regions of each kind are preserved, then the new curve P (V) will possess the
same total absolute curvature as P1(V).

Proof: Consider the convex region in Figure 2.16(a). For a vertex to be inserted in this
region without creating new regions, it must be inside of the grey area shown in the figure.

The curvature wpg, of the original region is:
Wgr = a3 + as. (2.3.20)

The insertion of a new vertex changes two of the angles in the existing curve (a; and o),

and adds a new angle (c3). The new curvature is
wh = a] + oy + as, - (2.3.21)

where oy = o +6; and oy = o) + 0. From Equation 2.3.15 we know that a3 = 6 + 05,

thus the curvature of the region becomes

U)}z = CYII +oz'2+91 +92
= o1+ oo. ) (2322)

The same applies for any number of insertions, both in convex or concave regions. |

(a) Convex region (shown in (b) After insertion of a vertex
grey)

Figure 2.16: Insertion of a vertex into a convex region.
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2.3.2 Spherical image of a curve and curvature identical curves

The spherical image of a curve illustrates graphically the concept of Total Absolute Cur-
vature. The spherical image for a polygonal curve is constructed by means of outwards
unit normals to the line segments of the curve. All of them are translated to the same
origin such that their endpoints will lie on the unit circle. Let us suppose that we walk
around the boundary of a polygon, for example, in Counter—Clockwise direction starting
from vertex v, passing through all the vertices according to their order until we arrive
again at the vertex ;. From this walk, a corresponding walk on the circle is generated,
where some parts of the circle are traversed several times for a non—convex curve. The
length of this walk is equal to the Total Absolute Curvature of a curve.

The spherical image provides a vertex classification of the curve as for a reflex vertex
the direction will be opposite to the chosen orientation. The spherical images can be put in
one-to—one correspondence for two curves of the same dataset if the numbers of concav-
ities/convexities and corresponding incorporated curvatures for both curves are the same.
We say in this case that two curves are curvature identical. If the total absolute curvatures
are equal for two curves, but they are not curvature identical, their spherical images will
be different; because in this case either the numbers of concavities (i.e. concave regions
of a curve) will be different or the incorporated curvatures will be different. Therefore,
the spherical image can be used as a representative of any subset of curvature identical
curves that span the same dataset.

Examples of two curvature identical curves and their éorresponding spherical images
are given in Figure 2.17 and Figure 2.18. The spherical images are represented as starting
from the normal vector of the segment 7;7,. For the sake of clarity, the normal vectors

are shown growing outwards in the circle.

Vg V7 Vg Vg
Vs Vy
31 Vs Vs V1o
(a) Fitted curve (b) Spherical image

Figure 2.17: Curve fitted dver a ten—point dataset, with its spherical image.

If we change the starting point of our walk in one of the polygons, the spherical

images of both polygons can be put in one—to—one correspondence. From the definition
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Vg Ve Vg Vg

%] Vg4
14 YV Vs V10
(a) Fitted curve (b) Spherical image

Figure 2.18: Different curve fitted over the ten—point dataset, with its spherical image.

of the spherical image it follows that in order to determine the excess of total absolute
curvature of a given curve with respect to the convex curve, it is sufficient to reconstruct
the outwards normals only to separating and deviating segments. Then the length of the
walk on a circle that the endpoints of these normals generate, by observing the proper
ordering, will be equal to this excess.

We are interested in determining the general properties of discrete curves of minimum
Total Absolute Curvature. As we saw in the previous subsection, a curve of minimum
TAC spanning the data may not be unique. An open problem is, given a curve of min-
imum Total Absolute Curvature that spans a given dataset, determine other curves also
of minimum TAC spanning the same data. This problem can be reformulated in a more
general form as determining the subset of curves that span the data and also have the same
Total Absolute Curvature, equal to a certain value (2.

In general, we can assume that the set P(V)_ of all admissible curves that span the
same finite discrete data is divided into a finite number of disjoint subsets, each subset
P (V) containing curves with the same value of Total Absolute Curvature §2,,.

Curves with the Total Absolute Curvature equal to (2,, might be not curvature iden-
tical. It might be the case that the subset of curves with the same @ are further divided
into several disjoint sub—subsets of curvature identical curves. The curve that has the
minimum Total Absolute Curvature with respect to all admissible curves, is denoted with

P(V)

2.4 Potential applications of TAC

This section presents two practical applications where the concepts previously described

for the Total Absolute Curvature of discrete curves can be used.
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2.4.1 Curve reconstruction from point clouds

From the results in Section 2.3, we can conclude that in order to obtain a curve of min-
imum Total Absolute Curvature that spans a given data set V, three parameters may be
minimised: the number of deviations of a curve from the CH-curve, the number of convex
regions in a deviation, and the amount of curvature contributed by reflex vertices in each
deviation. The dependence among these parameters is not straightforward. We need to
decrease the amount of curvature contributed by all the reflex vertices in a curve, and a
curve with only one deviation does not guarantee to be a curve of minimum TAC. How-
ever, the above remarks give us an indication on how to approach the study of properties
of discrete curves with respect to their Total Absolute Curvature and how to design ap-
propriate algorithms.

In order to minimise Total Absolute Curvature on curves that span the given data, we
designed several algorithms. The algorithms serve also to understand better the properties
of curves of minimum TAC, given the data. They can be divided in two groups, algorithms
of the first group search for a curve with minimum TAC among curves with only one
deviation, and in the second group among curves that allow multiple deviations. We first
describe the properties of curves with one deviation.

If we have the data set V in a non—convex position, then we can determine the layers
of this set by repeatedly removing all convex hull elements and considering the convex
hull of the remaining set. The set V has k layers if this process terminates after precisely
k steps. So the first layer is the convex hull of the whole dataset, and subsequent layers

are nested convex hulls (see Figure 2.19).

D%

depth 2

depth 1
®
depth 0

Figure 2.19: Nested convex hulls of a dataset.

Given a curve that covers a dataset with k layers, a segment of the curve whose end—
points belong to two different layers is known as a link segment. Two link segments form

a bridge if they belong to the same deviation and both segments are connected to at least
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one layer in common. Figure 2.20 illustrates link segments and bridges.

. 1 Link segments

Figure 2.20: A bridge delimited by two link segments, in a dataset with two layers.

If both link segments of a bridge connect successive layers, the bridge is called short.
To preserve a simple closed curve, no two bridges can have endpoints that belong to the

same layers. The following statements are valid:

Lemma 2.4.1. Given a dataset with k layers, the limits on the number of link segments n
necessary to join all layers is as follows: If k = 1 the dataset is convex, and there is no
need for link segments, n = 0. For non—convex curves, k > 1 andn > k.

Proof: To join all layers with one segment between each pair we need k—1 link segments.
In the minimum case, we need one additional link segment that joins the innermost layer
with the outermost one, thus making the minimum number of link segments n = k. A

curve with this configuration is shown in Figure 2.21 |

L]

[
i
¢ &

Figure 2.21: Curve with minimum amount of link segments. In the data k£ = 3, and there are 3
link segments.

Lemma 2.4.2. The maximal number of bridges in a curve with one deviation does not
exceed k — 1 where k is the number of layers. The maximal number of link segments in a
curve with one deviation is equal to 2(k — 1).

Proof: The maximum number of bridges is necessary when all of them are short, as in
the curve on Figure 2.22. Each bridge completely joins two layers. In a dataset of k layers

there are only k — 1 pairs of successive layers. ; u
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Figure 2.22: Curve with maximum amount of link segments. In the data k¥ = 3, and there are 4
. link segments.

Lemma 2.4.3. The total curvature of a curve with one deviation does not exceed 21 +-
dn(k — 1), where k is the number of layers. This bound is exact.

Proof: The curvature of the convex hull is 27 for the whole dataset. Every convex layer
inserted increases the curvature by an additional 27. Each link segment contributes to the
curvature with a maximum of  at its endpoints, and in the worst case two link segments
are necessary to join every pair of layers. Thus for every layer added, the curvature

increases by a maximum of 4. |

From the previous proof we can conclude that having less link segments can produce
curves with smaller curvature. From Lemma 2.4.1 we know that £ is the minimum number
of link segments in a dataset with k layers.

We next investigate how multiple deviations influence the TAC. This difficult problem
is still under study, but we can make several observations. First is that any new deviation
may contribute to TAC up to 27 + 4w (k — 1). Adding new bridges may also contribute to
curvature. So, a heuristic idea is to keep deviations as simple as possible, and deviating
angles as small as possible. Appendix A describes two algorithms to reconstruct curves
from a point cloud. One of them builds curves with a single deviation, and the other
generates curves with multiple deviations. Below we briefly illustrate how these ideas
work in practice. .

Two examples are offered, in which the data consist of two layers. For simplicity,

we assume that the data lie on two concentric circumferences, of radii 7gyier and Tipner
and with P(V)?

min

correspondingly. We denote a curve of minimum TAC with P(V), .,

the curve with one deviation that has the minimum TAC with respect to all curves with

one deviation that span the given data.

Example 1: In this example the data is situated so that if we connect the centre point O
with a vertex v, on the outer circumference, there is another vertex v; that lies on

the inner circumference and that belongs to the segment Ov,. Each circumference
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is composed of 10 points. This example clearly shows that the concept of ‘near-
ness’ between two sample points is not essential for changing the Total Absolute
Curvature of a curve. We can show that the curvature Qa of a curve that spans
this data with multiple deviations is always larger than the P (V )" in curve for the
same data. Moreover, keeps the same value no matter how small is the distance

ST  Touter  Tinner (soe Figure 2.23).

(a) Curve P (V)V n that (b) Curve of minimum
is also P(V)7 TAC among curves with
multiple deviations

Figure 2.23: Concentric circles with vertices aligned.

This example also shows that a global minimum to a discrete optimisation prob-
lem might be very far indeed from the input configuration. For example, we can
assume that sample points were originally taken from the curve P (V )sau; presented

in Figure 2.24.

Figure 2.24: Original source of the data: curve P (V)

In these points high values of curvature are ‘incorporated’, and therefore they are
considered as significant for shape description. The curve in Figure 2.23(b) might

be served as an initial approximation of P (V )sau;, but not the curve in Figure 2.23(a).

Example 2: In this example also each circumference has 10 points. The points on the
inner circumference are slightly rotated with respect to the outer circle, so that no
point on the inner circumference belongs to the segment Ou 0. In this case we can

show that by decreasing the distance Sr = router —rinner at a certain moment the
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curve of minimum TAC among curves with multiple deviations becomes P (V )min

and its TAC tends to 2n.

The curve in Figure 2.25(a) has one deviation and is P(V )”*in and also P (V )min,
while Figure 2.25(b) is the curve of minimum TAC among curves with multiple

deviations. Both of them are generated using the same dataset.

A new dataset, where the radius ofthe inner circle has been increased, produces the
curves in Figure 2.26. Here Figure 2.26(a) is P(V)JCn but it is no longer P (V )min,
and the curve in Figure 2.26(b) is now P (V )min.

(a) TAC = 16.3287 (b) TAC = 24.1451

Figure 2.25: Concentric circles with inner circle rotated.

(a) TAC = 16.3167 (b) TAC = 16.2223

Figure 2.26: Rotated concentric circles with smaller Sr.

Appendix A shows the experiments done using various algorithms to fit a curve over
a dataset. The algorithms presented generate curves with one or various deviations, as the
one shown in the previous examples. The principles presented in this chapter are used as

a parameter to evaluate the curves generated.

2.4.2 Face recognition by curvature of face profiles

A practical application of curvature measures is their use in the field offace recognition.
Such an idea has been previously explored in (Thodberg and Olafsdottir 2003), where

curvature measures are used to determine feature points on curves representing the profile

35



of faces. This section presents the experiments carried on using measurements of Total
Absolute Curvature of polygonal curves to perform face recognition.

Face data was obtained from a structured light scanner developed in-house at Sheffield
Hallam University (Robinson et al. 2004), (Robinson 2005). The scanner generates an
approximate three—dimensional model of a human face from a single picture, when a pat-
tern of structured light (multiple stripes) is being projected on a target. In theory, the 3D
object can be recovered from the captured data in all cases. But in practice, due to varying
lighting conditions, occlusions, and pixel noise in the 2D image, the generated 3D data
can have inconsistencies. '

For the purpose -of comparing acquired 3D faces, a transversal section of the face
is obtained from the single vertical stripe that covers the tip of the nose. This yields
a number of points on the profile of the face. A curve is then fitted over the vertices,
and the curvature measures of the discrete curve obtained are used to differentiate the
faces. Initially the data is simplified by removing vertices with a curvature less than a
certain threshold, keeping only important features of the face. The curve is closed to
make a consistent ordering of the vertices and to enable measurements of the area of
the polygons. This is done by adding a vertex at the back of the profile, in a position
at the middle of the distance between the first and last vertices in the dataset, and that
same distance perpendicularly to the back of the profile. As an example, Figure 2.27

shows the closed polygons for two face profiles. The measures obtained for the curve in

Figure 2.27(a) are:
Curvature = 19.250550
Curvature squared = 16.741678
Length = 26.719916
Area = 36.689424

and for the curve in Figure 2.27(b), the following results were obtained:

Curvature = 19.531384
Curvature squared = 17.754017
Length = 26.344608
Area = 37.216353

The results of these partial experiments are of limited use because of the lack of a
large enough sample population. However further work on this area is suggested, since
curvature measures of the faces can be consistent even for different scans of the same

person under various conditions.
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(a) Male face profile (b) Female face profile

Figure 2.27: Example profiles used for face recognition by curvature measures.

2.5 Conclusions

The discrete analogues of curvature for a piecewise linear approximation of a curve have
been presented in this chapter as the sum of the angles at the vertices of a polygonal curve.
By considering the absolute values of these angles, regardless of the direction of the turn,
we get the Total Absolute Curvature of a polygon. We classify the vertices of a discrete
curve according to their location with respect to the convex hull. A distinction is made
between vertices that lie on the convex hull of the dataset, and interior vertices, that lie in
what we call deviations. The relationship between the angles of each type of vertex and
their curvature is developed to demonstrate that a convex curve has the TAC equal to 27,
and non-convex curves will have curvatures larger than 27t dependent on the inner angles
at the deviations. From these results we can conclude that the curvature of a curve is
highly dependent on the curvature of the deviations. An extension of these concepts will
be used in the next chapter to measure the curvature of vertices in a polyhedral surface.

The spherical image of a curve has been presented as an alternative method to measure
the Total Absolute Curvature of a polygon, based on the normal vectors to the edges of the
curve. We have shown how this method can be used to clearly identify curves that have
the same curvature but different geometries. This is the basis of the Polyhedral Gauss
Map method that will be presented in Chapters 3 and 4.

The concepts of deviations and layers presented in this chapter can be applied to curve
reconstruction algorithms. Some initial experiments on how this can be done are ex-
plained in Appendix A. Based on these concepts we have shown that, given the data, a
curve of minimum TAC may not be unique, and that a solution to a discrete optimisation
problem may lead to an unexpected curve and might be very far from the source of the
data samples. The research on the discrete optimisation problem provides the foundation

for the research on the curvature of surfaces in three-dimensions.
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Chapter 3

Discrete curvature in three dimensions

3.1 Introduction |

In many applications a physical object is represented by discrete data, commonly obtained
by some measurement system to record the coordinates of sample points on its surface.
Triangular or polygonal meshes (i.e. piecewise linear surfaces) are commonly used in
modern computer—related applications to represent surfaces in three—dimensional space,
which cover the sampled points. Therefore, there is a substantial need for accurate es-
timates of geometric attributes that are directly computed from a mesh, such as surface
area, normal vectors, and curvatures. In recent years significant efforts have been made
to define the analogues of differential geometry concepts on meshes, which imitate those
of a smooth surface (Dyn et al. 2001), (Meyer et al. 2002), (Borrelli et al. 2003) and
(Eastlick 2006). Among these concepts surface curvatures are particularly important, as
they are basic measures to describe the local shape of a smooth surface. However, the
surface of a triangle mesh is not smooth, and there is still no consensus about the most
appropriate way of estimating geometric quantities such as curvature. Additionally, var-
ious methods are being developed to capture curvature information without referring to
higher—order formulae of differential geometry. These methods are based on the discrete
curvature concepts and are of growing interest for geometric modelling. They permit the
discrete curvatures to be computed directly from triangle meshes using their intrinsic in-
formation. The principal difference between a polyhedral and a smooth surface is that the
" discrete curvatures in a polyhedral surface are concentrated around the vertices and along
the edges.
Measures of curvature in a piecewise linear setting should be analogues of integral
formulae for curvature in a smooth setting and should preserve the integral relations for
curvature, such as the Gauss—Bonnet theorem (Polya 1954), (Banchoff 1970), (Brehm

and Kiihnel 1982). Such analogues exist and were introduced long ago in relation to

38



the theory of non-regular surfaces (see an overview in (Alboul and van Damme 1994)).
These analogues were discussed in detail in (Brehm and Kiihnel 1982), where the authors
also compare discrete curvatures with their smooth counterparts.

In the last decade the number of papers that explore discrete curvatures within cer-
tain contexts has increased significantly. Much attention is paid to the discrete Gaussian
curvature, known also as the Angle Deficit. It has also been referred to as angular de-
fect and abbreviated in this thesis as the AD. The concept was brought to the attention of
the geometric modelling community in (Calladine 1986), where the author listed several
applications of the angle deficit in surface modelling, mostly in the the context of the me-
chanics of thin—shell structures. Nowadays, the angle deficit is used to evaluate curvature
information directly from a mesh, as well as to estimate the Gaussian curvature and derive
principal curvatures of the underlying smooth surface, assuming that the mesh samples
the surface in a certain way (Peng et al. 2003), (Meyer et al. 2002).

In (Borrelli ez al. 2003) the problem of the correct estimation of the Gaussian curva-
ture is investigated in detail, and they argue, on the basis of several approximation results,
that approaches based on the use of normalised angular deficits are often erroneous, and
can be applied correctly only if the geometry of meshes is precisely controlled. We advo-
cate these conclusions, and in the following chapters we highlight why the angular deficit
is sufficient neither to estimate the Gaussian curvature of the underlying smooth surface
nor to capture the curvature information of a polyhedral surface. Loosely speaking, the
reason is that there are more curvatures for polyhedral surfaces than for smooth ones. This
fact is still not fully acknowledged, but without addressing it, it is impossible to develop
correct curvature estimates.

In the smooth case, the Gauss Map and related shape operator completely determine
the shape of the original surface (Kiihnel 2002). Therefore, efforts have been made £o
use analogues of the Gauss Map to explore shape characteristics of a complex polyhe-
dral surfaces. For example, an analogue such as the extended Gaussian image is used
in Computer Graphics and Vision to compare objects and to illuminate the structure of
surface shape (Little 1985), (Lowekamp et al. 2002). However, the extended Gaussian
image and its generalisations construct only normals to the faces of the polyhedral sur-
face without indicating their connectivity. There exist few attempts to create the Gauss
map directly from the mesh, but the results are still scarce and ambiguous for non—convex

- objects (Lowekamp, Rheingans, and Yoo 2002).
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Our method constructs a polyhedral analogue of the Gauss map directly from a polyg-
onal mesh and uses this map to characterise surface shape. We believe that such an algo-
rithm is developed here for the first time. We also give a definition of the Polyhedral Gauss
Map (PGM) and show its conformity with the smooth case. The resulting PGM provides
a description of the surface by determining its curvature domains, that is, flat, convex or
saddle regions, with respect to incorporated curvatures. These domains are often only im-
plicitly present in a polyhedral surface, and cannot be determined by the sign of the angle
deficit only. Each domain can be split up into uniquely determined sub—domains; there-
fore each surface can be associated with the collection of these sub-domains. The method
provides also a better insight into the geometric structure of complex triangle meshes, by
describing various vertex types, some of them with a very complex PGM.

A good understanding of the geometry of meshes is a step towards more robust mesh
manipulation algorithms. The PGM method besides shape recognition and description
can be used for optimisation of the underlying model or for developing subdivision schemes.
Finally, the proposed PGM is computationally viable, can be viewed dynamically, and is
effective in visualising curvature features of complex polyhedral surfaces. The theory
and algorithms in this and the next chapter have been partially presented in (Alboul et al.
2005) and (Alboul and Echeverria 2005).

3.1.1 Previous research on Gauss Maps

The papers (Banchoff 1967) and (Banchoff 1970) present the analogous to the Gauss—
Bonnet theorem for the curvature of polyhedral surfaces. Banchoff draws directly from
the method described by Gauss to find the curvature of a surface, and presents the Gauss
Map of vertices in a polyhedral surface, using the normal vectors of the faces around a
vertex. He proves how the curvature of a vertex can be measured in an analogous way
to the methods for a smooth surface. He points out the relationship between the critical
points of a surface and the types of vertices that can be identified with the Gauss Map.
This is also the case in (Brehm and Kiihnel 1982), where curvature measures are expressed
in terms of the number of critical points.

One of the first studies on using Gaussian Images to identify objects is presented in
(Horn 1983). The method used is described as Extended Gaussian Images (EGI) and is
based, for the discrete polyhedral case, on projecting the normal vectors of the face of the
polyhedron into a sphere, and assigning to each of these normals a density directly related
to the corresponding face area. The resulting Gaussian image is considered as a weighed

mass, with a centre of mass always located at the centre of the sphere. In this report, Horn
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. also demonstrates the relationship between the computation of curvature for the discrete
and smooth cases. Further analysis is made there for the best possible tesselation of the
sphere in order to group the Gaussian image in cells. Useful tesselations need to have cells
of similar area and shape, have regular shapes and provide good resolution on the surface
of the sphere. The best tesselations found are obtained from the projection of regular or
semi-regular polyhedra onto the sphere, and then further subdividing them into triangles.
In another section, Horn deals with curvature measures of solids of revolution, including
a torus, which is a non—convex object but can have its curvature measured using EGIL.

(Little 1985) uses a slightly different definition of the EGI, where each of the normal
- vectors has a length proportional to the area of its corresponding face. He investigates how
this form of EGI, being unique for every convex polyhedron, can be used to reconstruct
the original object, according to the Minkowski theorem (Lyusternik 1963). This approach
requires a definition of the orientation of the faces of the object, known as a combinatorial
type, which describes the adjacency relationship between faces and edges. The technique
can be directly used to reconstruct an object in 2D thanks to the inherent definition of
orientation, but in the case of 3D it requires an iterative process to approximate the target
shape. This is because of the disconnected nature of the normals. Reconstructing a 3D
surface requires extra data structures that relate to the connectivity of normal vectors of
adjacent faces.

Another estimation of the curvature of a polygonal surface is obtained in (Cohen-
Steiner and Morvan 2003) based on the normal cycle at vertices, edges and triangles. An
error bound is proven from the curvature of a discrete surface obtained as a restricted
Delaunay triangulation of the smooth surface.

We will present a novel approach to measuring curvature that has not been explored
before. The understanding of positive and negative components of curvature permits the
correct characterisation of vertices, impossible using previous methods. Additionally the
Polyhedral Gauss Map proposed makes use of the correlation of the normal vectors di-
rectly from the polygonal mesh. It reflects more accurately the geometry of the vertices

and their local neighbourhoods on the surface.

3.1.2 Existing applications using Gauss Maps

The Gauss Map has been used in the past to aid in the solution to several different prob-:
lems. The way to compute it varies as well. Here we present some applications and
explain the methods used to find it.

An analysis on the treatment of spherical polygons is found in (Chen ez al. 1993)
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for an application on automatic machining of mechanical parts. The problem tackled is
identifying optimal orientations of pieces in a cutting machine to perform the most piece
cuts in one single setup. They use the Gauss Map of the pieces, where the aim of the
algorithms is to identify the areas of the sphere where most of the spherical polygons are
situated, as the optimal orientations of the pieces in the cutting machine. They define
operations of the surface of the sphere to determine the intersections of spherical poly-
gons with a great circle, and then find the hemisphere with the most number of spherical
polygons.

The Gauss Map of a vertex is computed and used in (Rodriguez and Rosenberg 2000)
to extend the Cauchy theorem related to the rigidity of convex polyhedra in R3. By
using only face orientations they are able to define the ‘Gaussian image’ in such a way
that for certain non—convex vertices this image represents a convex spherical polygon.
They explore the different vertex configurations, such as: convex cone, non—convex cone,
saddle and figure—eight. In their approach the Gauss Map for a given vertex is obtained
from the normal vectors of the incident faces, which are projected to the surface of a
sphere and joined with geodesic arcs. The direction of these vectors can be changed so as
to get a convex projection on the surface of the sphere. If such a convex geodesic polygon
can be found for all the vertices in the polyhedron, then it is qualified as rigid, including
polyhedra with figure—eight vertices. The authors do not intend their version of Gauss
Map to be used as a measurement of curvature. The algorithm used for the Gauss Map
avoids intersecting geodesic arcs by changing the direction of the normal vectors, and
hence it does not really reflect the amount of curvature incorporated in a vertex.

The work of (Grinspun and Schréder 2001) makes use of the Gauss Map of subdivi-
sion surfaces to detect self—intersections of the surface when it is subjected to deforma-
tion. The test implemented here requires placing a plane between the centre of the sphere
and the Gauss Map area on the surface of the sphere. If such a plane exists, then it is
assumed that there is no intersection. This approach uses a different version of the Gauss
Map for whole patches of the surface, while each vertex contributes only with one vector
to the Gauss Map, in a manner similar to the smooth case.

In (Yamauchi et al. 2005) the Gauss Map is used to determine a more adequate mesh
segmentation to do texture mapping without deformations. They define a segmentation
that distributes curvature evenly among every patch. The iterative growing process for
the patches places constraints on how fast they can develop, so that they remain balanced
in curvature. The curvature measure is used both to decide when a vertex, edge or face

is incorporated into a patch, and to balance the growth of the larger patches with respect
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to their Gauss area. Their choice of using Gauss Map to obtain the curvature is based
on mathematical robustness. In their implementation, the Gauss Map provides curvatures
in the range [0, 47]. The Gauss Map of vertices is obtained using the normal vectors of
- adjacent faces, while the Gauss Map for edges and faces is computed using the normal
vectors of the incident vertices. Again this approach does not consider the case of non—

convex vertices.

3.2 Basic concepts and definitions

For the purpose of this thesis we are interested only in discrete curvatures related to the
integral Gaussian curvature, i.e. those that are supported on the vertices. In what follows
we give a brief comparative analysis between the known integral relations for curvature

for smooth surfaces and their discrete counterparts.

3.2.1 Polyhedral surface

By a polyhedral surface we understand a triangulated polyhedral surface. Let a vertex
be a triple: v = (z,y,z) € R3. We design V as a finite point set in three~dimensional
space, V = {v;;i = 1,2,...,n}, we denote by P(V) a polyhedral surface with the
vertex set V. The term polyhedron refers to a closed polyhedral surface. In such a setting
a polyhedron is bounded, but might be non-homeomorphic to a sphere. Also it might
be multi—connected and self-intersecting, and its interior volume is not necessarily part
of the polyhedron. Therefore, a polyhedron is not necessarily a solid body. A triangle
mesh is a particular case of a polyhedral surface. Therefore, all properties of a polyhedral
surface discussed below are applicable to a mesh.

Given a polyhedron P(V), the set of its vertices is denoted by V, the edges by E, and
the faces by F.

Definition 3.2.1. The star of a vertex v, denoted as star(v), is the union of all the faces
and edges that contain the vertex. The link of the vertex (the boundary of the star) is the
union of all those edges of the faces of the star(v) that are not incident to v. It is denoted
as link(v). ‘

For simplicity we will make an initial distinction between vertices.

Definition 3.2.2. We refer as manifold vertices to those vertices for which their star maps
one-to—one to an open disc. Vertices for which such relationship cannot be found will
be called non-manifold vertices. These are vertices with self—intersections of the faces in
their star.
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3.2.2 Integral Gaussian curvature and the angle deficit

For a domain U of a smooth surface S the Gauss mgip N(U) is the map assigning to
each point p € U the point on the unit 2—sphere S? € R3, by translating the unit normal
vector N (p) to the origin (Kiihnel 2002). The endpoints of normals, therefore, will cover
a certain region on S? (see Figure 3.1). This method is an extension of the one presented

in Section 2.3.2 for the spherical image of a planar curve.

LS

Figure 3.1: Gauss Map of a smooth surface.

Given a neighbourhood U (p) on S, the ratio of the area N(U(p)) to the area of U(p)
can be considered as a measure of the amount of curvature of the surface S near the point
p. Then the Gaussian curvature K (p) is defined by setting

_ o area(N(U())
K —Ul(p)lp area(U(p)) (3.2.1)

where the limit is taken as the neighbourhood U(p) contracts down to the point p (do
Carmo 1976). ‘ '

If a neighbourhood U (p) is sufficiently small such that the map N(U(p)) is one~to-
one and orientation—preserving (outward normals at corresponding points on S and S*
correspond), then the area N (U (p)) is considered positive, and the corresponding region
U(p) is said to be strictly convex and K(p) > 0. If the map N(U(p)) is one—to—one but
orientation reversing, then the area N(U(p)) is considered to be negative, p is a saddle
point and K (p) < 0. Of course, different regions of S can be mapped to the same region
on the unit sphere, which results in multiplicities of the Gauss map.

Therefore for a region U(p), for which the map N(U(p)) might not be one-to—one,
the integral Gaussian curvature (K;,;) is understood as the integral of the area of the image

of U(p) under the Gauss mapping:

Kin = / KdA. (3.2.2)
U
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For an entire closed smooth surface the previous formula turns into the mathematical

expression of the Gauss—Bonnet theorem (Bloch 1998):

/ KdA = 2nx(S), (3.2.3)
s

where x(S) is the Euler characteristic of S. The discrete analogue of Equation 3.2.2 is
known as the Angle Deficit (shown in Figure 3.2), first introduced by Descartes, and which

measures the discrete Gaussian curvature w around vertex v:
w=2r—0, (3.24)

where 6§ = > o is the total angle around vertex v, and «; are those angles of the faces in
star(v) that are incident on v. This is a polygonal analogue of the Gauss—Bonnet theorem
(Banchoff 1970).

Figure 3.2: Computation of the Gaussian curvature (w) around vertex v.

For any non—vertex point in the surface p € P(V), the curvature w is identically equal
to zero. Hence, for a domain U C P(V) the total curvature Qy; is determined as the sum

of the curvature of every vertex:
Q=) w). (3.2.5)

For an oriented closed polyhedral surface P(V) of genus g the total curvature p(vy is
equal to (1 — g)4, so the analogue of the integral relation for the Gaussian curvature is
preserved (Alboul and van Damme 1994), (Banchoff and Kiihnel 1998).

3.2.3 Integral absolute curvature and its discrete analogue

The following measure which we determine is an analogue of the integral absolute curva-
ture for a polyhedral domain. The most obvious candidate for this measure seems to be

the sum of absolute values of the angle deficits around the vertices in the domain.
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However, in Figure 3.3 we can see that in both polyhedra all curvatures w(v;) are
positive. In the depicted polyhedra the curvatures w(v;) are actually equal for every cor-
responding vertex, i.e. for all corresponding vertices v; € P; and v; € P, the curvature

w(y;) is the same. Therefore, we have:
QP) =P) = Y lw)| = ) lw(v)| = 4. (326)
veP, veP,

The left polyhedron in Figure 3.3 is non—convex, but Equation 3.2.6 does not reflect this

fact.

=

Vi Ve

Vs

Vs .

Vi Va Vi Va

Figure 3.3: Two polyhedra with similar Gaussian curvatures.

The total absolute curvature Kgps = | s |K(|dA for a closed non—convex smooth sur-
face S is greater than 4; therefore, ), . p |w(v)] is not an appropriate analogue of K.
The problem is that the curvature w around a vertex may consist of positive and negative
components that are ‘glued’ together, and the task is to separate them.

For any given vertex v we can imagine the convex hull of the subset of vertices in-
cluded in star(v). If the vertex v belongs to the convex hull of its star, then we can define
another star, denominated star*(v), which contains the vertex v and the faces and edges
of the convex hull that are incident on the vertex. We refer to star* () as the convex cone
of vertex v. Then, using a variation of Equation 3.2.4, the positive (extrinsic) curvature
wt is defined as:

wt =27 -0t ‘ (3.2.7)

where 67 is the sum of angles of the faces incident on v in star*(v). The positive curva-
ture w is equal to zero if the vertex v and all the vertices in link(v) lie in the same plane.
If the convex cone around v does not exist, i.e. v lies inside the convex hull of star(v),
then w™ is, by definition, equal to zero.

The negative (extrinsic) curvature w™ of w is determined as the complement of the
positive curvature:

wT=wt —w. (3.2.8)



The absolute (extrinsic) curvature & is defined as:
O=wt+w. (.29

The word ‘extrinsic’ in the introduced curvatures is used due to the fact that they refiect
how a vertex is embedded in space, while the angle deficit, computed only by using the
angles around a vertex remains an intrinsic measure.

Four basic types of vertices for an embedded polyhedral surface are then distin-
guished, using the positive and negative components of curvature w* and w~. We call

a vertex:

o Flatifw = 0;

e Convex if vt = w;

e Saddle if v~ = —w;

e Mixed if wt > 0and w* # w.

In other words, convex vertices have a curvature which is entirely positive, saddle ver-
tices have entirely negative curvature, and mixed vertices have both kinds of curvature.

Examples of these kinds of vertices are shown in Figure 3.4.

57 A

(a) Flat vertex (b) Convex vertex
y .

(c) Saddle vertex (d) Mixed vertex

Figure 3.4: Vertex types identified using the Total Absolute Curvature.

We now establish an analogy between the measure of the curvature of a planar poly-

gon, as presented in Section 2.3.1, and the curvature of a vertex in a two—dimensional
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triangulated polyhedral surface. The curvature of a planar polygon is obtained from the
sum of angles at the vertices. For the curvature of a vertex in space we measure the sum
of the angles of the incident faces.

For a vertex v, we can split the set F' of faces in star(v) into two disjoint subsets: The
faces that belong to the convex cone star+(z;) are placed in the set F*, and the angles of
these faces at the vertex v are denoted with o;, 7 = 1, ..., r. The faces that do not belong
to star*(v) are placed in F9¢V, and the angles of these faces at the vertex v are denoted
with B¢, k = 1,. .., s. If nis the number of faces in star(v), then r + s = n. We can then
expand Equation 3.2.4 into:

S

r
w=2r— E ozj—
Jj=1 k

Note that all the edges of star™(v) are also edges of star(v), and if star(v) is not convex,

Bk (3.2.10)
1

then its deviation from the convex star occurs at an edge of star*(v). We call such an
edge a deviation edge (analogous to the deviation vertex presented in Section 2.3 for
planar polygons). The deviation edges occur always in pairs. The dihedral angle at the
deviation edge in star(v) is sharper than the corresponding dihedral angle in star™(v).
First we analyse the case of vertices where the faces in F4eV all have one edge that
belongs to star™(v), as is the case of the vertex in Figure 3.5(a). For simplicity we draw
the link(v) from a top-down perspective, as in Figure 3.5(b). In it every edge corresponds

to a face in star(v), and edges are labelled with the angle of the face at v.

14 (641
' /
4
i
Q2 Y2
5 /\,6’ P>
A % :
= M- ‘
(a) Mixed vertex (b) Top—down view of the link

Figure 3.5: Mixed vertex where all faces have at least one deviation edge.

We can designate with I" the faces of the convex hull that do not belong to star(v).

The angles of these faces are designated y;,7 =1, ..., q. Equation 3.2.10 is rewritten as:

T q q s
G=2m— 0= %+ ni— B (3.2.11)
=1 =1 i=1 k=1

48



We can then split Equation 3.2.11 into two parts:

r q q S
& =2m— (Zaj+2%) + (Z%‘Zﬂk)~ (32.12)
j=1 i=1 i=1 k=1

The first part corresponds to the positive curvature:

T q
wt =21 — (Z o+ Z’y,-) : (3.2.13)
j=1 i=1

and then the remaining part is the negative curvature:

q s
—w = (Z Y=y ﬂk> : (3.2.14)
i=1 k=1

The value of (—w™) will always be negative, since the sum of 3 will always be larger than
the sum of . The minus sigh before w™ is used in order to keep its value positive. If the
sums were equal, then the faces would be part of the convex hull. ,

As was shown in Section 2.3.1 for the curvature of planar polygons, the curvature of
a vertex can be determined as the sum of the convex curvature plus the curvature of the
deviations, which are convex regions themselves, but with opposite orientation. Using this
principle we can deconstruct the stars of mixed vertices where not every face in star(v)
has deviation edges.

For each ‘deviation’ from the convex hull, we can define a second cone, consisting of
the faces that belong to that single deviation (a subset of F9¢V), and closed by one face
that belongs to the star*(v) but not to star(v). The new cone corresponds to a negative
part of the curvature of v. This new cone is not necessarily convex, but can be ‘separated’

_into a number of convex cones, by inserting ‘imaginary’ faces inside of it. The set of
imaginary faces is denoted with I'’, and the faces have angles y;,/ = 1, ..., incident on
v. The curvature of the deviation is measured by the sum of angles of the faces of each
of the individual convex cones thus obtained. Such a vertex is illustrated in Figure 3.6. In

this example, the negative curvature is measured as:

wi=(1—B—PB)+(n—0Fh-—m)- (3.2.15)

The total absolute extrinsic curvature S is defined then as the sum of absolute extrinsic

curvatures of all the n vertices of a polyhedral surface P(V):

n

Q= Zd)(l/i) = () +w () (3.2.16)

i=1
The total absolute extrinsic curvature ) produces different values on the polyhedra

that are depicted in Figure 3.3. It is equal to 47 on the right polyhedron (as it represents
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(a) Mixed vertex (b) Top—down view of the link

Figure 3.6: Mixed vertex where some faces do not have any deviation edges.

a convex body), and is greater than 47 on the left polyhedron, which is not convex. This
example illustrates the fact that the total absolute extrinsic curvature of a polyhedral sur-
face is an adequate analogue of Total Absolute Curvature of a smooth surface. The Total
Absolute Curvature identifies hidden folds in the stars of the vertices that Angle Deficit

ignores.

3.3 The Polyhedral Gauss Map

Separation of the positive and negative parts of the curvature for a mixed vertex can also
be carried out using an analogue of the Gauss map for a polyhedral surface, which we
call the Polyhedral Gauss Map. For a polyhedral surface curvatures are concentrated
around vertices, so we need to be able to construct the PGM for an individual vertex, and
the union of the Polyhedral Gauss Maps for all vertices determines the Total Absolute
Curvature of a polyhedral surface. Assuming that the surface is oriented, we can construct
an outward unit normal to any point of a face except at vertices and edges, and all these
normals are parallel to one another. By translating them to the same origin, we get a
unique unit vector. Applying the same procedure to each face of star(v) we get a bundle
of unit vectors. The endpoints of these vectors lie on the unit sphere. Without loss of
generality, we assume that no two neighbouring faces lie in the same plane, then each
endpoint corresponds to a face. By analogy with the smooth case seen in Section 3.2.2
we can make the following definitions:

Definition 3.3.1. The bundle of unit normals, corresponding to star(v) is called the nor-
mal star of v. The endpoints of the vectors in the normal star are joined, in order around

the vertex, by geodesic arcs of the unit sphere. We will refer to the collection of these
geodesic arcs as the spherical indicatrix of a vertex v.

The construction of the spherical indicatrix from the normal vectors of a convex vertex
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is illustrated in Figure 3.7.

(a) Normal vectors of each face (b) Vectors joined by geodesic arcs

Figure 3.7: Construction of the spherical indicatrix of a convex vertex.

The spherical indicatrix can be also used to determine the Mean curvature H of a
polyhedral surface P(V), which is a discrete analogue of the integral mean curvature for
smooth surfaces. The Mean curvature H is determined along the edges, and for an edge
e, H(e) is equal to (half) the oriented exterior angle (3(e) between the faces adjacent to
e. The absolute value of (3(e) is equal to the length of the geodesic arc that connects two
normals to the faces adjacent to e. This is true since the arcs lie on a unit sphere. In this
research we are interested only in analogues of the Gaussian curvature, and therefore we
only consider the Mean curvature H in special cases.

In the simplest cases the arcs of the PGM will not intersect and draw a single spherical
polygon on the surface of the sphere. This is the case for flat, convex or simple saddle
vertices, as defined in Section 3.2.3, which have only positive or negative curvature com-
ponents, but not both. In the case of a mixed vertex, there will be self-intersections in the
indicatrix. Figure 3.8 shows the spherical indicatrices with and without self-intersections.

The spherical indicatrix also delimits the area of one or more spherical polygons. The
ordering of the vectors with respect to their corresponding faces is used to determine the
sign of the spherical polygons. Figure 3.9 exemplifies this idea, showing a convex and a
saddle vertex from a top-down view. When the order of the faces and normal vectors is
the same (Figure 3.9(a)), we say the s