32 research outputs found

    Reconfiguration of Dominating Sets

    Full text link
    We explore a reconfiguration version of the dominating set problem, where a dominating set in a graph GG is a set SS of vertices such that each vertex is either in SS or has a neighbour in SS. In a reconfiguration problem, the goal is to determine whether there exists a sequence of feasible solutions connecting given feasible solutions ss and tt such that each pair of consecutive solutions is adjacent according to a specified adjacency relation. Two dominating sets are adjacent if one can be formed from the other by the addition or deletion of a single vertex. For various values of kk, we consider properties of Dk(G)D_k(G), the graph consisting of a vertex for each dominating set of size at most kk and edges specified by the adjacency relation. Addressing an open question posed by Haas and Seyffarth, we demonstrate that DΓ(G)+1(G)D_{\Gamma(G)+1}(G) is not necessarily connected, for Γ(G)\Gamma(G) the maximum cardinality of a minimal dominating set in GG. The result holds even when graphs are constrained to be planar, of bounded tree-width, or bb-partite for b≥3b \ge 3. Moreover, we construct an infinite family of graphs such that Dγ(G)+1(G)D_{\gamma(G)+1}(G) has exponential diameter, for γ(G)\gamma(G) the minimum size of a dominating set. On the positive side, we show that Dn−m(G)D_{n-m}(G) is connected and of linear diameter for any graph GG on nn vertices having at least m+1m+1 independent edges.Comment: 12 pages, 4 figure

    TS-Reconfiguration of Dominating Sets in circle and circular-arc graphs

    Full text link
    We study the dominating set reconfiguration problem with the token sliding rule. It consists, given a graph G=(V,E) and two dominating sets D_s and D_t of G, in determining if there exists a sequence S= of dominating sets of G such that for any two consecutive dominating sets D_r and D_{r+1} with r<t, D_{r+1}=(D_r\ u) U v, where uv is an edge of G. In a recent paper, Bonamy et al studied this problem and raised the following questions: what is the complexity of this problem on circular arc graphs? On circle graphs? In this paper, we answer both questions by proving that the problem is polynomial on circular-arc graphs and PSPACE-complete on circle graphs.Comment: This work was supported by ANR project GrR (ANR-18-CE40-0032) and submitted to the conference WADS 202

    Shortest Dominating Set Reconfiguration under Token Sliding

    Full text link
    In this paper, we present novel algorithms that efficiently compute a shortest reconfiguration sequence between two given dominating sets in trees and interval graphs under the Token Sliding model. In this problem, a graph is provided along with its two dominating sets, which can be imagined as tokens placed on vertices. The objective is to find a shortest sequence of dominating sets that transforms one set into the other, with each set in the sequence resulting from sliding a single token in the previous set. While identifying any sequence has been well studied, our work presents the first polynomial algorithms for this optimization variant in the context of dominating sets.Comment: To appear at FCT 2023 (Fundamentals of Computation Theory

    Dominating sets reconfiguration under token sliding

    Get PDF
    corecore