22 research outputs found

    A multi-degree-of-freedom reconfigurable ankle rehabilitation robot with adjustable workspace for post-stroke lower limb ankle rehabilitation

    Get PDF
    Introduction: A multi-degree-of-freedom ankle rehabilitation robot with an adjustable workspace has been designed to facilitate ankle joint rehabilitation training. It features a rotation center adapted to the human body, making it suitable for patients with ankle dysfunction following a stroke.Method: In this study, a multi-degree-of-freedom reconfigurable ankle rehabilitation robot (RARR) with adaptable features, based on the principles of ergonomics, has been proposed to cater to the varying needs of patients. This robot offers an adjustable workspace, allowing for different types of ankle joint rehabilitation exercises to be performed. By adjusting the assembly of the RARR, personalized and targeted training can be provided to patients, circumventing issues of redundancy in degrees of freedom during its use. A kinematic model of the robot has been established, and finite element simulation has been employed to analyze the strength of critical components, ensuring the safety of the robot. An experimental platform has been set up to assess the smoothness of the rehabilitation process with RARR, with angle measurements conducted using an Inertial Measurement Unit (IMU).Results and discussion: In conclusion, both simulation and experimental results demonstrate that the robot offers an adjustable workspace and exhibits relatively smooth motion, thereby confirming the safety and effectiveness of the robot. These outcomes align with the intended design goals, facilitating ankle joint rehabilitation and advancing the field of reconfigurable robotics. The RARR boasts a compact structure and portability, making it suitable for various usage scenarios. It is easily deployable for at-home use by patients and holds practical application value for wider adoption in rehabilitation settings

    Adaptive Trajectory Tracking Control of a Parallel Ankle Rehabilitation Robot With Joint-Space Force Distribution

    Get PDF
    This paper proposes an adaptive trajectory tracking control strategy implemented on a parallel ankle rehabilitation robot with joint-space force distribution. This device is redundantly actuated by four pneumatic muscles (PMs) with three rotational degrees of freedom. Accurate trajectory tracking is achieved through a cascade controller with the position feedback in task space and force feedback in joint space, which enhances training safety by controlling each PM to be in tension in an appropriate level. At a high level, an adaptive algorithm is proposed to enable movement intention-directed trajectory adaptation. This can further help to improve training safety and encourage human-robot engagement. The pilot tests were conducted with an injured human ankle. The statistical data show that normalized root mean square deviation (NRMSD) values of trajectory tracking are all less than 2.3% and the PM force tracking being always controlled in tension, demonstrating its potential in assisting ankle therapy

    Design and Hierarchical Force-Position Control of Redundant Pneumatic Muscles-Cable-Driven Ankle Rehabilitation Robot

    Get PDF
    Ankle dysfunction is common in the public following injuries, especially for stroke patients. Most of the current robotic ankle rehabilitation devices are driven by rigid actuators and have problems such as limited degrees of freedom, lack of safety and compliance, and poor flexibility. In this letter, we design a new type of compliant ankle rehabilitation robot redundantly driven by pneumatic muscles (PMs) and cables to provide full range of motion and torque ability for the human ankle with enhanced safety and adaptability, attributing to the PM's high power/mass ratio, good flexibility and lightweight advantages. The ankle joint can be compliantly driven by the robot with full three degrees of freedom to perform the dorsiflexion/plantarflexion, inversion/ eversion, and adduction/abduction training. In order to keep all PMs and cables in tension which is essential to ensure the robot's controllability and patient's safety, Karush-Kuhn-Tucker (KKT) theorem and analytic-iterative algorithm are utilized to realize a hierarchical force-position control (HFPC) scheme with optimal force distribution for the redundant compliant robot. Experiment results demonstrate that all PMs are kept in tension during the control while the position tracking accuracy of the robot is acceptable, which ensures controllability and stability throughout the compliant robot-assisted rehabilitation training

    Compliance adaptation of an intrinsically soft ankle rehabilitation robot driven by pneumatic muscles

    Get PDF
    Pneumatic muscles (PMs)-driven robots become more and more popular in medical and rehabilitation field as the actuators are intrinsically complaint and thus are safer for patients than traditional rigid robots. This paper proposes a new compliance adaptation method of a soft ankle rehabilitation robot that is driven by four pneumatic muscles enabling three rotational movement degrees of freedom (DoFs). The stiffness of a PM is dominated by the nominal pressure. It is possible to control the robot joint compliance independently of the robot movement in task space. The controller is designed in joint space to regulate the compliance property of the soft robot by tuning the stiffness of each active link. Experiments in actual environment were conducted to verify the control scheme and results show that the robot compliance can be adjusted when provided changing nominal pressures and the robot assistance output can be regulated, which provides a feasible solution to implement the patient-cooperative training strategy

    Hierarchical Compliance Control of a Soft Ankle Rehabilitation Robot Actuated by Pneumatic Muscles

    Get PDF
    Traditional compliance control of a rehabilitation robot is implemented in task space by using impedance or admittance control algorithms. The soft robot actuated by pneumatic muscle actuators (PMAs) is becoming prominent for patients as it enables the compliance being adjusted in each active link, which, however, has not been reported in the literature. This paper proposes a new compliance control method of a soft ankle rehabilitation robot that is driven by four PMAs configured in parallel to enable three degrees of freedom movement of the ankle joint. A new hierarchical compliance control structure, including a low-level compliance adjustment controller in joint space and a high-level admittance controller in task space, is designed. An adaptive compliance control paradigm is further developed by taking into account patient’s active contribution and movement ability during a previous period of time, in order to provide robot assistance only when it is necessarily required. Experiments on healthy and impaired human subjects were conducted to verify the adaptive hierarchical compliance control scheme. The results show that the robot hierarchical compliance can be online adjusted according to the participant’s assessment. The robot reduces its assistance output when participants contribute more and vice versa, thus providing a potentially feasible solution to the patient-in-loop cooperative training strateg

    Synchronous Position and Compliance Regulation on a Bi-Joint Gait Exoskeleton Driven by Pneumatic Muscles

    Get PDF
    A previously developed pneumatic muscles’ (PMs) actuated gait exoskeleton (with only knee joint) has been demonstrated in achieving appropriate actuation torque, range of motion (ROM), and control bandwidth for task-specific gait training. While the adopted multi-input–multi-output (MIMO) sliding mode (SM) strategy has preliminarily implemented simultaneous control of the exoskeleton’s angular trajectory and compliance, its efficacy with human users during gait cycles has not been investigated. This article presents an improved bi-joint gait rehabilitation exoskeleton (BiGREX) with integrated human hip and knee joints. The results with 12 healthy subjects demonstrated that the system’s compliance can be effectively adjusted while guiding the subjects walking in predefined trajectories. Note to Practitioners —This article was motivated by achieving compliant interaction between PM-actuated exoskeletons and human when conducting task-specific gait training. Due to the intrinsic nonlinearity of PM, it is challenging to establish a mathematical model to precisely predict real-time compliance of the powered joints. This article suggests a new strategy that adopts the average pressure of flexor and extensor PMs as the feedback to synchronously realize the joint position control and compliance regulation. A novel experimental approach was adopted to validate the system capability on adjusting the compliance from human users’ perception. This article provides a new insight between the controlled PM pressure and the desired joint compliance, which would be essential for the future design of PM-actuated exoskeletons

    A New 4-DOF Robot for Rehabilitation of Knee and Ankle-Foot Complex: Simulation and Experiment

    Full text link
    Stationary robotic trainers are lower limb rehab robots which often incorporate an exoskeleton attached to a stationary base. The issue observed in the stationery trainers for simultaneous knee and ankle-foot complex joints is that they restrict the natural motion of ankle-foot in the rehab trainings due to the insufficient Degrees of Freedom (DOFs) of these trainers. A new stationary knee-ankle-foot rehab robot with all necessary DOFs is developed here. A typical rehab training is first implemented in simulation, and then tested on a healthy subject. Results show that the proposed system functions naturally and meets the requirements of the desired rehab training.Comment: 23 pages, 14 figure

    A Review Study for Robotic Exoskeletons Rehabilitation Devices

    Get PDF
    Nowadays, robotic exoskeletons demonstrated great abilities to replace traditional rehabilitation processes for activating neural abilities performed by physiotherapists. The main aim of this review study is to determine a state-of-the-art robotic exoskeleton that can be used for the rehabilitation of the lower limb of people who have mobile disabilities as a result of stroke and musculoskeletal conditions. The study presented the anatomy of the lower limb and the biomechanics of human gait to explain the mechanism of the limb, which helps in constructing a robotic exoskeleton. A state-of-the-art review of more than 100 articles related to robotic exoskeletons and their constructions, functionality, and rehabilitation capabilities are accurately implemented. Moreover, the study included a review of upper limb rehabilitation that has been studied locally and successfully applied to patients who exhibited significant improvements. Results of recent studies herald an abundant future for robotic exoskeletons used in the rehabilitation of the lower extremity. Significant improvement in the mechanism and design, as well as the quality, were observed. Also, impressive results were obtained from the performance when used by patients. This study concludes that working and improving the robotic devices continuously in accordance with the cases are necessary to be treated with the best results and the lowest cost

    Modular soft pneumatic actuator system design for compliance matching

    Get PDF
    The future of robotics is personal. Never before has technology been as pervasive as it is today, with advanced mobile electronics hardware and multi-level network connectivity pushing âsmartâ devices deeper into our daily lives through home automation systems, virtual assistants, and wearable activity monitoring. As the suite of personal technology around us continues to grow in this way, augmenting and offloading the burden of routine activities of daily living, the notion that this trend will extend to robotics seems inevitable. Transitioning robots from their current principal domain of industrial factory settings to domestic, workplace, or public environments is not simply a matter of relocation or reprogramming, however. The key differences between âtraditionalâ types of robots and those which would best serve personal, proximal, human interactive applications demand a new approach to their design. Chief among these are requirements for safety, adaptability, reliability, reconfigurability, and to a more practical extent, usability. These properties frame the context and objectives of my thesis work, which seeks to provide solutions and answers to not only how these features might be achieved in personal robotic systems, but as well what benefits they can afford. I approach the investigation of these questions from a perspective of compliance matching of hardware systems to their applications, by providing methods to achieve mechanical attributes complimentary to their environment and end-use. These features are fundamental to the burgeoning field of Soft Robotics, wherein flexible, compliant materials are used as the basis for the structure, actuation, sensing, and control of complete robotic systems. Combined with pressurized air as a power source, soft pneumatic actuator (SPA) based systems offers new and novel methods of exploiting the intrinsic compliance of soft material components in robotic systems. While this strategy seems to answer many of the needs for human-safe robotic applications, it also brings new questions and challenges: What are the needs and applications personal robots may best serve? Are soft pneumatic actuators capable of these tasks, or âusefulâ work output and performance? How can SPA based systems be applied to provide complex functionality needed for operation in diverse, real-world environments? What are the theoretical and practical challenges in implementing scalable, multiple degrees of freedom systems, and how can they be overcome? I present solutions to these problems in my thesis work, elucidated through scientific design, testing and evaluation of robotic prototypes which leverage and demonstrate three key features: 1) Intrinsic compliance: provided by passive elastic and flexible component material properties, 2) Extrinsic compliance: rendered through high number of independent, controllable degrees of freedom, and 3) Complementary design: exhibited by modular, plug and play architectures which combine both attributes to achieve compliant systems. Through these core projects and others listed below I have been engaged in soft robotic technology, its application, and solutions to the challenges which are critical to providing a path forward within the soft robotics field, as well as for the future of personal robotics as a whole toward creating a better society

    Reconfigurable workspace and torque capacity of a compliant ankle rehabilitation robot (CARR)

    No full text
    The novelty of this paper is the adjustable workspace and torque capacity of a compliant ankle rehabilitation robot (CARR). The robot has three rotational degrees of freedom (DOFs) redundantly actuated by four compliant actuators. It suffers from conflicting workspace and actuation torque due to the use of a parallel mechanism and compliant actuators. To address this issue, also considering physical constraints imposed by human users, the CARR is designed with reconfigurability to make a trade-off between workspace and torque capacity for meeting different training requirements. Theoretical analysis indicates that varying kinematic and dynamic performance of the robot can be achieved by reconfiguring the layout of the actuators. Experiments with/without load also demonstrate the validity of the reconfigurable robotic design for practical applications
    corecore