3,123 research outputs found

    MEMS-reconfigurable metamaterials and antenna applications

    Get PDF
    This paper reviews some of our contributions to reconfigurable metamaterials, where dynamic control is enabled by micro-electro-mechanical systems (MEMS) technology. First, we show reconfigurable composite right/left handed transmission lines (CRLH-TLs) having state of the art phase velocity variation and loss, thereby enabling efficient reconfigurable phase shifters and leaky-wave antennas (LWA). Second, we present very low loss metasurface designs with reconfigurable reflection properties, applicable in reflectarrays and partially reflective surface (PRS) antennas. All the presented devices have been fabricated and experimentally validated. They operate in X- and Ku-bands.Comment: 8 pages; 8 figures; International Journal of Antennas and Propagatio

    Reconfigurable Reflectarrays and Array Lenses for Dynamic Antenna Beam Control: A Review

    Full text link
    Advances in reflectarrays and array lenses with electronic beam-forming capabilities are enabling a host of new possibilities for these high-performance, low-cost antenna architectures. This paper reviews enabling technologies and topologies of reconfigurable reflectarray and array lens designs, and surveys a range of experimental implementations and achievements that have been made in this area in recent years. The paper describes the fundamental design approaches employed in realizing reconfigurable designs, and explores advanced capabilities of these nascent architectures, such as multi-band operation, polarization manipulation, frequency agility, and amplification. Finally, the paper concludes by discussing future challenges and possibilities for these antennas.Comment: 16 pages, 12 figure

    On the design of an Ohmic RF MEMS switch for reconfigurable microstrip antenna applications

    Get PDF
    This paper presents the analysis, design and simulation of a direct contact (dc) RF MEMS switch specified for reconfigurable microstrip array antennas. The proposed switch is indented to be built on PCB via a monolithic technology together with the antenna patches. The proposed switch will be used to allow antenna beamforming in the operating frequency range between 2GHz and 4GHz. This application requires a great number of these switches to be integrated with an array of microstrip patch elements. The proposed switch fulfills the switching characteristics as concerns the five requirements (loss, linearity, voltage/power handling, small size/power consumption, temperature), following a relatively simple design, which ensures reliability, robustness and high fabrication yiel

    Frequency reconfigurable patch antenna for 4G LTE applications

    Get PDF
    A compact printed multi-band frequency reconfigurable patch antenna for 4G LTE applications is presented in this paper (50 x 60 x 1.6 mm3). The antenna consists of W-shaped and Inverted-U shaped patch lines connected in a Tree-shape on the front side of the antenna. The back-side of the antenna contains a 90°-tilted T-shaped strip connected with an Inverted-L shaped strip which is shorted with a patch on the front side for increasing the electrical length to cover lower frequency bands. Frequency reconfigurability is achieved by inserting three switches i.e., PIN diodes. The most critical part of this work is the designing of RLC-based DC line circuits for providing the DC biasing to the PIN diodes used as switches and inserting them at optimum locations. This antenna is reconfigurable among eight different 4G LTE frequency bands including 0.9 GHz, 1.4 GHz, 1.5 GHz, 1.6 GHz, 1.7 GHz, 1.8 GHz, 2.6 GHz, 3.5 GHz and WLAN band 2.5 GHz. The antenna exhibits different radiation patterns having a different direction of peak gain at different frequencies and for different switching combinations. The antenna is simulated with CST, and a prototype is fabricated to compare the measured and simulated results with good accuracy

    Single-, Dual- and Triple-band Frequency Reconfigurable Antenna

    Get PDF
    The paper presents a frequency reconfigurable slot dipole antenna. The antenna is capable of being switched between single-band, dual-band or triple-band operation. The antenna incorporates three pairs of pin-diodes which are located within the dipole arms. The antenna was designed to operate at 2.4 GHz, 3.5 GHz and 5.2 GHz using the aid of CST Microwave Studio. The average measured gains are 1.54, 2.92 and 1.89 dBi for low, mid and high band respectively. A prototype was then constructed in order to verify the performance of the device. A good level of agreement was observed between simulation and measurement

    A reconfigurable H-shape antenna for wireless applications

    Get PDF
    The official published version of this article can be obtained from the link below - Copyright @ EuCAP2010This paper presents a novel H-Shaped reconfigurable microstrip patch antenna fed by a Grounded Coplanar Waveguide (GCPW) for wireless applications. The uniqueness in the presented antenna design relies in the ability to select the number of operating frequencies electronically by using a varactor diode. The antenna structure consists of coplanar waveguide (CPW) input with an H-shape printed on a PCB and a varactor diode for reconfigurability. By electronically varying the value of the diode capacitance, the antenna can operate in a single band mode to cover Global Position System (GPS), a dual band mode to cover GPS and Global System for Mobile communications (GSM1900) or a three-band mode to cover GPS, GSM1900 and Bluetooth or Wireless Local Area Networks (WLAN)

    PIFA based reconfigurable multiband antenna for wireless applications

    Get PDF
    Copyright @ 2010 IEEEA compact reconfigurable four bands Planar Inverted-F Antenna (PIFA) is presented for Digital Video Broadcasting - Handheld (DVB-H), Universal Mobile Telecommunications System (UMTS), Global System for Mobile Communications (GSM800, 900, 1800 and 1900), Personal Communications System (PCS), Wireless Local Area Network and Bluetooth (WLAN), Worldwide Interoperability for Microwave Access (m-WiMAX) and Hiperlan/2 applications. Two varactor diodes with variable capacitors are used to electrically tune the operating frequencies over a wide range. The overall size of the radiated parts is 31.5 × 30.5 mm2 which makes it easy to integrate it into small mobile handset. Depending on the voltage applied to the switches the operating frequencies at 0.7 GHz, 2 GHz, 3.5 GHz and 5 GHz can be tuned over 30.48%, 20%, 4% and 4% respectively. The peak gains for the four bands range -4dBi, 3dBi, 3dBi and 6dBi at DVB-H, UMTS, WiAMX and WLAN, respectively. The average efficiency of the four bands ranges from 95% to 85%. The radiation patterns and other discussions are provided
    corecore