3 research outputs found

    From Traditional Adaptive Data Caching to Adaptive Context Caching: A Survey

    Full text link
    Context data is in demand more than ever with the rapid increase in the development of many context-aware Internet of Things applications. Research in context and context-awareness is being conducted to broaden its applicability in light of many practical and technical challenges. One of the challenges is improving performance when responding to large number of context queries. Context Management Platforms that infer and deliver context to applications measure this problem using Quality of Service (QoS) parameters. Although caching is a proven way to improve QoS, transiency of context and features such as variability, heterogeneity of context queries pose an additional real-time cost management problem. This paper presents a critical survey of state-of-the-art in adaptive data caching with the objective of developing a body of knowledge in cost- and performance-efficient adaptive caching strategies. We comprehensively survey a large number of research publications and evaluate, compare, and contrast different techniques, policies, approaches, and schemes in adaptive caching. Our critical analysis is motivated by the focus on adaptively caching context as a core research problem. A formal definition for adaptive context caching is then proposed, followed by identified features and requirements of a well-designed, objective optimal adaptive context caching strategy.Comment: This paper is currently under review with ACM Computing Surveys Journal at this time of publishing in arxiv.or

    A Survey and Taxonomy of Self-Aware and Self-Adaptive Cloud Autoscaling Systems

    Get PDF
    Autoscaling system can reconfigure cloud-based services and applications, through various configurations of cloud software and provisions of hardware resources, to adapt to the changing environment at runtime. Such a behavior offers the foundation for achieving elasticity in a modern cloud computing paradigm. Given the dynamic and uncertain nature of the shared cloud infrastructure, the cloud autoscaling system has been engineered as one of the most complex, sophisticated, and intelligent artifacts created by humans, aiming to achieve self-aware, self-adaptive, and dependable runtime scaling. Yet the existing Self-aware and Self-adaptive Cloud Autoscaling System (SSCAS) is not at a state where it can be reliably exploited in the cloud. In this article, we survey the state-of-the-art research studies on SSCAS and provide a comprehensive taxonomy for this field. We present detailed analysis of the results and provide insights on open challenges, as well as the promising directions that are worth investigated in the future work of this area of research. Our survey and taxonomy contribute to the fundamentals of engineering more intelligent autoscaling systems in the cloud

    Reconciling Cost and Performance Objectives for Elastic Web Caches

    No full text
    corecore