6 research outputs found

    AccMER: Accelerating Multi-Agent Experience Replay with Cache Locality-aware Prioritization

    Full text link
    Multi-Agent Experience Replay (MER) is a key component of off-policy reinforcement learning~(RL) algorithms. By remembering and reusing experiences from the past, experience replay significantly improves the stability of RL algorithms and their learning efficiency. In many scenarios, multiple agents interact in a shared environment during online training under centralized training and decentralized execution~(CTDE) paradigm. Current multi-agent reinforcement learning~(MARL) algorithms consider experience replay with uniform sampling or based on priority weights to improve transition data sample efficiency in the sampling phase. However, moving transition data histories for each agent through the processor memory hierarchy is a performance limiter. Also, as the agents' transitions continuously renew every iteration, the finite cache capacity results in increased cache misses. To this end, we propose \name, that repeatedly reuses the transitions~(experiences) for a window of nn steps in order to improve the cache locality and minimize the transition data movement, instead of sampling new transitions at each step. Specifically, our optimization uses priority weights to select the transitions so that only high-priority transitions will be reused frequently, thereby improving the cache performance. Our experimental results on the Predator-Prey environment demonstrate the effectiveness of reusing the essential transitions based on the priority weights, where we observe an end-to-end training time reduction of 25.4%25.4\%~(for 3232 agents) compared to existing prioritized MER algorithms without notable degradation in the mean reward.Comment: Accepted to ASAP'2

    Progressive Transfer Learning for Dexterous In-Hand Manipulation with Multi-Fingered Anthropomorphic Hand

    Full text link
    Dexterous in-hand manipulation for a multi-fingered anthropomorphic hand is extremely difficult because of the high-dimensional state and action spaces, rich contact patterns between the fingers and objects. Even though deep reinforcement learning has made moderate progress and demonstrated its strong potential for manipulation, it is still faced with certain challenges, such as large-scale data collection and high sample complexity. Especially, for some slight change scenes, it always needs to re-collect vast amounts of data and carry out numerous iterations of fine-tuning. Remarkably, humans can quickly transfer learned manipulation skills to different scenarios with little supervision. Inspired by human flexible transfer learning capability, we propose a novel dexterous in-hand manipulation progressive transfer learning framework (PTL) based on efficiently utilizing the collected trajectories and the source-trained dynamics model. This framework adopts progressive neural networks for dynamics model transfer learning on samples selected by a new samples selection method based on dynamics properties, rewards and scores of the trajectories. Experimental results on contact-rich anthropomorphic hand manipulation tasks show that our method can efficiently and effectively learn in-hand manipulation skills with a few online attempts and adjustment learning under the new scene. Compared to learning from scratch, our method can reduce training time costs by 95%.Comment: 12 pages, 7 figures, submitted to TNNL

    Single- and multiobjective reinforcement learning in dynamic adversarial games

    Get PDF
    This thesis uses reinforcement learning (RL) to address dynamic adversarial games in the context of air combat manoeuvring simulation. A sequential decision problem commonly encountered in the field of operations research, air combat manoeuvring simulation conventionally relied on agent programming methods that required significant domain knowledge to be manually encoded into the simulation environment. These methods are appropriate for determining the effectiveness of existing tactics in different simulated scenarios. However, in order to maximise the advantages provided by new technologies (such as autonomous aircraft), new tactics will need to be discovered. A proven technique for solving sequential decision problems, RL has the potential to discover these new tactics. This thesis explores four RL approaches—tabular, deep, discrete-to-deep and multiobjective— as mechanisms for discovering new behaviours in simulations of air combat manoeuvring. Itimplements and tests several methods for each approach and compares those methods in terms of the learning time, baseline and comparative performances, and implementation complexity. In addition to evaluating the utility of existing approaches to the specific task of air combat manoeuvring, this thesis proposes and investigates two novel methods, discrete-to-deep supervised policy learning (D2D-SPL) and discrete-to-deep supervised Q-value learning (D2D-SQL), which can be applied more generally. D2D-SPL and D2D-SQL offer the generalisability of deep RL at a cost closer to the tabular approach.Doctor of Philosoph
    corecore