4,879 research outputs found

    Ontology-Based Recommendation of Editorial Products

    Get PDF
    Major academic publishers need to be able to analyse their vast catalogue of products and select the best items to be marketed in scientific venues. This is a complex exercise that requires characterising with a high precision the topics of thousands of books and matching them with the interests of the relevant communities. In Springer Nature, this task has been traditionally handled manually by publishing editors. However, the rapid growth in the number of scientific publications and the dynamic nature of the Computer Science landscape has made this solution increasingly inefficient. We have addressed this issue by creating Smart Book Recommender (SBR), an ontology-based recommender system developed by The Open University (OU) in collaboration with Springer Nature, which supports their Computer Science editorial team in selecting the products to market at specific venues. SBR recommends books, journals, and conference proceedings relevant to a conference by taking advantage of a semantically enhanced representation of about 27K editorial products. This is based on the Computer Science Ontology, a very large-scale, automatically generated taxonomy of research areas. SBR also allows users to investigate why a certain publication was suggested by the system. It does so by means of an interactive graph view that displays the topic taxonomy of the recommended editorial product and compares it with the topic-centric characterization of the input conference. An evaluation carried out with seven Springer Nature editors and seven OU researchers has confirmed the effectiveness of the solution

    Personalisation and recommender systems in digital libraries

    Get PDF
    Widespread use of the Internet has resulted in digital libraries that are increasingly used by diverse communities of users for diverse purposes and in which sharing and collaboration have become important social elements. As such libraries become commonplace, as their contents and services become more varied, and as their patrons become more experienced with computer technology, users will expect more sophisticated services from these libraries. A simple search function, normally an integral part of any digital library, increasingly leads to user frustration as user needs become more complex and as the volume of managed information increases. Proactive digital libraries, where the library evolves from being passive and untailored, are seen as offering great potential for addressing and overcoming these issues and include techniques such as personalisation and recommender systems. In this paper, following on from the DELOS/NSF Working Group on Personalisation and Recommender Systems for Digital Libraries, which met and reported during 2003, we present some background material on the scope of personalisation and recommender systems in digital libraries. We then outline the working group’s vision for the evolution of digital libraries and the role that personalisation and recommender systems will play, and we present a series of research challenges and specific recommendations and research priorities for the field

    The Computer Science Ontology: A Large-Scale Taxonomy of Research Areas

    Get PDF
    Ontologies of research areas are important tools for characterising, exploring, and analysing the research landscape. Some fields of research are comprehensively described by large-scale taxonomies, e.g., MeSH in Biology and PhySH in Physics. Conversely, current Computer Science taxonomies are coarse-grained and tend to evolve slowly. For instance, the ACM classification scheme contains only about 2K research topics and the last version dates back to 2012. In this paper, we introduce the Computer Science Ontology (CSO), a large-scale, automatically generated ontology of research areas, which includes about 26K topics and 226K semantic relationships. It was created by applying the Klink-2 algorithm on a very large dataset of 16M scientific articles. CSO presents two main advantages over the alternatives: i) it includes a very large number of topics that do not appear in other classifications, and ii) it can be updated automatically by running Klink-2 on recent corpora of publications. CSO powers several tools adopted by the editorial team at Springer Nature and has been used to enable a variety of solutions, such as classifying research publications, detecting research communities, and predicting research trends. To facilitate the uptake of CSO we have developed the CSO Portal, a web application that enables users to download, explore, and provide granular feedback on CSO at different levels. Users can use the portal to rate topics and relationships, suggest missing relationships, and visualise sections of the ontology. The portal will support the publication of and access to regular new releases of CSO, with the aim of providing a comprehensive resource to the various communities engaged with scholarly data

    Recommender systems and their ethical challenges

    Get PDF
    This article presents the first, systematic analysis of the ethical challenges posed by recommender systems through a literature review. The article identifies six areas of concern, and maps them onto a proposed taxonomy of different kinds of ethical impact. The analysis uncovers a gap in the literature: currently user-centred approaches do not consider the interests of a variety of other stakeholders—as opposed to just the receivers of a recommendation—in assessing the ethical impacts of a recommender system
    corecore