1,019,377 research outputs found
Improving Reachability and Navigability in Recommender Systems
In this paper, we investigate recommender systems from a network perspective
and investigate recommendation networks, where nodes are items (e.g., movies)
and edges are constructed from top-N recommendations (e.g., related movies). In
particular, we focus on evaluating the reachability and navigability of
recommendation networks and investigate the following questions: (i) How well
do recommendation networks support navigation and exploratory search? (ii) What
is the influence of parameters, in particular different recommendation
algorithms and the number of recommendations shown, on reachability and
navigability? and (iii) How can reachability and navigability be improved in
these networks? We tackle these questions by first evaluating the reachability
of recommendation networks by investigating their structural properties.
Second, we evaluate navigability by simulating three different models of
information seeking scenarios. We find that with standard algorithms,
recommender systems are not well suited to navigation and exploration and
propose methods to modify recommendations to improve this. Our work extends
from one-click-based evaluations of recommender systems towards multi-click
analysis (i.e., sequences of dependent clicks) and presents a general,
comprehensive approach to evaluating navigability of arbitrary recommendation
networks
IC-Service: A Service-Oriented Approach to the Development of Recommendation Systems
Recommendation systems have proven to be useful in various application domains. However, current solutions are usually ad-hoc systems which are tightly-coupled with the application domain. We present the IC-Service, a recommendation service that can be included in any system in a loosely coupled way. The implementation follows the principles of service oriented computing and provides a solution to various problems arising in recommendation systems, e.g. to the problem of meta-recommendation systems development. Moreover, when properly configured, the IC-Service can be used by different applications (clients), and several independent instances of the IC-Service can collaborate to produce better recommendations. Service architecture and communication protocols are presented. The paper describes also ongoing work and applications based on the IC-Service
An improved switching hybrid recommender system using naive Bayes classifier and collaborative filtering
Recommender Systems apply machine learning and data mining techniques for filtering unseen information and can predict whether a user would like a given resource. To date a number of recommendation algorithms have been proposed, where collaborative filtering and content-based filtering are the two most famous and adopted recommendation techniques. Collaborative filtering recommender systems recommend items by identifying other users with similar taste and use their opinions for recommendation; whereas content-based recommender systems recommend items based on the content information of the items. These systems suffer from scalability, data sparsity, over specialization, and cold-start problems resulting in poor quality recommendations and reduced coverage. Hybrid recommender systems combine individual systems to avoid certain aforementioned limitations of these systems. In this paper, we proposed a unique switching hybrid recommendation approach by combining a Naive Bayes classification approach with the collaborative filtering. Experimental results on two different data sets, show that the proposed algorithm is scalable and provide better performance – in terms of accuracy and coverage – than other algorithms while at the same time eliminates some recorded problems with the recommender systems
A probabilistic model to resolve diversity-accuracy challenge of recommendation systems
Recommendation systems have wide-spread applications in both academia and
industry. Traditionally, performance of recommendation systems has been
measured by their precision. By introducing novelty and diversity as key
qualities in recommender systems, recently increasing attention has been
focused on this topic. Precision and novelty of recommendation are not in the
same direction, and practical systems should make a trade-off between these two
quantities. Thus, it is an important feature of a recommender system to make it
possible to adjust diversity and accuracy of the recommendations by tuning the
model. In this paper, we introduce a probabilistic structure to resolve the
diversity-accuracy dilemma in recommender systems. We propose a hybrid model
with adjustable level of diversity and precision such that one can perform this
by tuning a single parameter. The proposed recommendation model consists of two
models: one for maximization of the accuracy and the other one for
specification of the recommendation list to tastes of users. Our experiments on
two real datasets show the functionality of the model in resolving
accuracy-diversity dilemma and outperformance of the model over other classic
models. The proposed method could be extensively applied to real commercial
systems due to its low computational complexity and significant performance.Comment: 19 pages, 5 figure
- …
