
IC-SERVICE: A SERVICE-ORIENTED

APPROACH TO THE DEVELOPMENT OF

RECOMMENDATION SYSTEMS.

Aliaksandr Birukou, Enrico Blanzieri, Vincenzo
D’Andrea, Paolo Giorgini, Natallia Kokash and Alessio
Modena

July 2006

Technical Report # DIT-06-044

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Unitn-eprints Research

https://core.ac.uk/display/11829472?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




IC-Service: A Service-Oriented Approach to the
Development of Recommendation Systems

Aliaksandr Birukou, Enrico Blanzieri, Vincenzo D’Andrea, Paolo Giorgini,
Natallia Kokash, and Alessio Modena

Department of Information and Communication Technology,
University of Trento, via Sommarive 14, 38050 Povo (Trento), Italy

{aliaksandr.birukou, enrico.blanzieri, vincenzo.dandrea, paolo.giorgini,

natallia.kokash, alessio.modena}@dit.unitn.it

Abstract. Recommendation systems have proven to be useful in various
application domains. However, current solutions are usually ad-hoc sys-
tems which are tightly-coupled with the application domain. We present
the IC-Service, a recommendation service that can be included in any
system in a loosely coupled way. The implementation follows the princi-
ples of service oriented computing and provides a solution to various
problems arising in recommendation systems, e.g. to the problem of
meta-recommendation systems development. Moreover, when properly
configured, the IC-Service can be used by different applications (clients),
and several independent instances of the IC-Service can collaborate to
produce better recommendations. Service architecture and communica-
tion protocols are presented. The paper describes also ongoing work and
applications based on the IC-Service.

1 Introduction

Recommendation systems have recently become a powerful means to help users
in knowledge sharing. They have multiple applications from traditional infor-
mation to more recent e-commerce systems, where they try to predict users’
preferences and prune large information spaces in searching for items of interest.
Recommendation domains include, but are not limited to, movies (MovieLens1),
music (JUKEBOX [1]), books (Amazon, [2]), web links (Implicit, [3]) and hotels
(TripAdvisor2). However, current solutions are usually tightly-coupled with the
applications and only in rare cases they are domain-independent. This limits their
inclusion in different applications and thus their reuse. Meta-recommendation
systems [4] have been introduced to overcome these limitations. These systems
produce recommendations processing data from multiple information sources.
So far there are no tools that facilitate the development of such systems.

Interoperability is a fundamental quality for information systems aiming at
enabling large-scale data exchange. Behind technical issues, interoperability in-
cludes also cultural and organizational aspects. Being interoperable means being
1 MovieLens - movie recommendations. http://movielens.umn.edu/
2 TripAdvisor. Reviews of hotels, resorts and vacations. http://www.tripadvisor.com/



able to manage the culture of an organization and consequently maximizing the
opportunities of information sharing. This is the underpinning principle of the
Implicit Culture theory [5], a new paradigm in the area of recommendation sys-
tem development. The Implicit Culture approach aims at providing users with
suggestions based on behavioral patterns extracted from users’ actions. In other
words, recommendations are inferred from observations of actions that a group
of agents perform on a set of objects under certain conditions.

We introduce the IC-Service, a multi-purpose web-based recommendation
service. This service provides simple and configurable access to the System for
Implicit Culture Support (SICS) [5], which is implemented adopting the Ser-
vice Oriented Architecture (SOA). Therefore, it can be easily added to existing
software in any domain described in terms of agents, objects, actions and at-
tributes. This allows for the development of complex applications that include
recommendation tools using the idea of software composability instead of build-
ing them from scratch. The use of SOA provides technical interoperability, and
guarantees seamless communication of various agents around the world. An in-
stance of the IC-Service can be configured to be accessed by different applica-
tions. Several IC-Services can collaborate to facilitate knowledge sharing (e.g.
between communities). Flexible configuration mechanism allows for the highest
level of reusability providing a rapid and cheap way to embed the recommen-
dation service in any system. To the best of our knowledge, the IC-Service is
the unique service oriented solution to the problem of providing multi-purpose
and domain-independent recommendations, which occurs, for example, in meta-
recommendation systems. The IC-Service is a general solution that can be eas-
ily deployed both in applications under development and in existing systems,
in particular, in complex software applications where user personalization and
item/action recommendation have been excluded from requirements specifica-
tion because of additional costs. The IC-Service can be also applied to the prob-
lem of cross-selling recommendations [6], where the data about the customer
come from different retailers and must be integrated.

The rest of the paper is organized as follows. Section 2 describes briefly
the Implicit Culture theory. Section 3 illustrates the architecture of the SICS,
whereas some application perspectives are discussed in Section 4. Section 5 gives
some concluding remarks and outlines future work.

2 Implicit Culture

When a person has to act in an unknown social environment his/her behavior is
far from the optimal. We can think of many situations where, due to the lack of
knowledge, it becomes very difficult for the person to take the right decision. This
might not be the case for people that have previously faced similar situations.
Indeed, they may have acquired the necessary knowledge to act effectively in
the environment. This knowledge is usually implicit and it represents a sort of
“community culture”.



Implicit Culture is based on the assumption that it is possible to elicit the
community culture by observing the interactions of people with the environment
and to encourage the newcomer(s) to behave similarly to more experienced peo-
ple. Implicit Culture assumes that agents perform actions on objects in the
environment (see [5] for more details). The actions are considered in the context
of situations, so agents perform situated actions. The “culture” contains infor-
mation about actions and their relation to situations, namely which actions are
usually taken by the observed group and in which situations. This information
is then used to provide newcomers with information about the others’ behavior
in similar situations. When newcomers start to behave similarly to the commu-
nity culture, it means that we have a knowledge transfer. “Implicit Culture is a
relation between a set and a group of agents such that the elements of the set
behave according to the culture of the group” [5]. A SICS [5] is a system that
performs this transfer of knowledge.

Fig. 1. The general architecture of the System for Implicit Culture Support

The general architecture of the SICS is depicted in Figure 1. The SICS con-
sists of three components: the Observer, which uses a database of observations
to store information about actions performed by users in different situations;
the Inductive Module, which analyzes the stored observations and applies data
mining techniques to find a theory about the community culture; the Composer,
which exploits the observations and the theory in order to suggest actions in a
given situation. The Composer operates with the architectural abstraction of the
situation — the scene, which contains a set of objects and a set of actions that
can be performed on these objects. The Composer includes the following two
sub-modules: the Cultural Action Finder(CAF), which filters those actions that
satisfy the theory; and the Scenes Producer, which searches for scenes where the
actions (found by the CAF) are likely to be performed.



Figure 1 shows that the theory (representing the “community culture”) is
extracted from the observations on the set of agents and is then used to produce
recommendations for another set of agents. These two sets may be disjoint, may
overlap or coincide. The theory is rule-based and contains two parts. A part of
the theory used by the Composer can be specified a priori (domain theory), while
the other part is learnt by the Inductive Module and can evolve over time. For
instance, for the general problem of providing people with recommendations the
domain theory may say that the system must recommend items which are likely
to be accepted by the user, while the theory learnt by the Inductive Module may
contain information about which items are accepted.

As an example of Implicit Culture, let us consider a person who would like
to use a book-selling service, but does not know which service is used by other
people in the same location. Obviously, people who used to sell books know the
name of the service and it may be the case that they have tried several services
before choosing the best one. If the system is able to use previous history to
suggest that the person access the service used by others and he/she actually
does it, then it is possible to say that he/she behaves in accordance with the
community culture and that the Implicit Culture relation is established.

3 The IC-Service Architecture

This section contains the details of the SICS implementation used in the IC-
Service and justifies why particular tools and architectures have been adopted.

3.1 Implementation

The IC-Service is the remote part of the SICS which provides the recommenda-
tion service. The SICS architecture consists of three main layers (Figure 2):

– The SICS Core provides the implementation of the Implicit Culture ap-
proach. This layer is responsible for storing observations, managing theory
and facilitating actions by suggesting scenes. In particular, this layer imple-
ments the Composer and the Inductive Module functionality.

– The SICS Remote Module defines protocols for information exchange with
the client and converts the objects of the SICS Core in the format compatible
with these protocols.

– The SICS Remote Client provides a simpler interface for the remote clients.
It presents a wrapper that hides protocols used for information exchange.

The SICS Remote Client is composed of Remote Client Adapters, Spring3

Proxies/Adapters, and Aspect-Oriented Programming tools (AOP Helpers). Re-
mote Client Adapters are responsible for the asynchronous invocation of the SICS
Remote Module. Spring Proxies/Adapters provide the connection to the SICS
Remote Module via SOAP (Simple Object Access Protocol) or RMI(Remote

3 http://www.springframework.org



Fig. 2. The detailed SICS architecture

Method Invocation). AOP Helpers provide logging, validation and exception
management. SOAP4 is a lightweight XML-based protocol for exchanging infor-
mation in a distributed environment. It consists of an envelope that defines a
template for describing the message contents and the way to process it, a set of
encoding rules for expressing instances of application-defined datatypes, and a
convention for representing remote procedure calls and responses.

The SICS Remote Module includes the Spring Proxies/Adapters for the re-
mote invocation of the Composer Module using SOAP or RMI. Apache Axis is
used in addition to the Spring framework that allows the Composer to be avail-
able as a SOAP web service. EJB (Enterprise JavaBeans) part of the Remote
Module extends integration classes of the Spring framework to allow for the use
of the Composer as an EJB component in J2EE environment. SICS Adapters
provide the connection between the SICS Remote Module and the SICS Core.
Finally, AOP Helpers deal with logging, validation and exception management.

Let us describe the components of the SICS Core in detail. The architecture
of the Composer is shown in Figure 3(a). Besides the main functionality of
providing recommendations, it contains Similarity Utilities, which implement

4 http://www.w3.org/TR/soap/



the algorithms for calculating the similarity between objects, actions, etc., and
CAF Utilities used by the Cultural Action Finder. Composer Adapters are
auxiliary modules, in particular, responsible for the asynchronous execution of
the Composer services and cache management.

To discover theory about users’ behavior, the Inductive Module incor-
porates the implementation of the Apriori Algorithm for the association rule
mining [7] and its extension for generating rules in the Apriori Rule Generator
(Figure 3(b)). With the dashed line it is shown that the functionality of the
module can be extended with the implementation of other learning techniques.

(a) The architecture of the Com-

poser Module

(b) The architecture of the Inductive Module

(c) The architecture of the Configuration

Module

(d) The architecture of the Storage Module

Fig. 3. The detailed architecture of SICS modules

All parameters of a SICS instance are setup in the Configuration Module
(Figure 3(c)). Each instance of the SICS can have different configurations of
the Composer (Composer Constants), the mechanism of processing the theory
in the Inductive Module (Inductive Module Constants), and parameters of the
algorithm for calculating similarity between elements such as objects, actions,
etc. (Configuration of Similarity Functions). The following two modules are re-
sponsible for the configuration of a SICS instance: the XML Definition Loader,
which loads the configuration of the similarity algorithm from the corresponding
XML file; and the Simple Class Wrapper, which loads the configuration of the
similarity algorithm from the hierarchy of classes used by the Spring framework.

The architecture of the Storage Module is depicted in Figure 3(d). The
Storage Module is responsible for storing information about the application do-
main, i.e., adding or deletion of actors, managing groups, and saving observa-
tions. The SICS can be configured to use either of two modules to store data: the
Database Storage Module is responsible for the management of database storage
whereas the XML Storage Module stores the information in XML files. Stor-
age Adapters provide asynchronous execution of methods of the Storage Module



and cache management. A powerful high performance query service for data-
base storage is provided by the Hibernate5 library. The Storage Module also
includes a set of tools to work with an XML representation of the SICS infor-
mation: XQuery/XPath Utilities are used to read data from an XML repository,
Java/XML Transformers convert SICS objects into XML format and JDom
Utilities deal with editing of XML files. The Rule Storage Module, which is
responsible for the management of the theory (adding or removal of rules), is
organized in a similar way. As opposed to the Storage Module, it supports only
XML storage facilities. Core AOP Helpers provide logging, validation and
exception management.

3.2 Usage Scenarios

The IC-Service can be used within an application in three different ways (Fig-
ure 4): (i) SICS can be included in the application as a library (Figure 4(a)).
In this case the SICS Core deals directly with the objects, actions, etc. of the
applications. This way should be chosen when the application is not necessarily
distributed and can be tightly-coupled with the library. (ii) To enable remote
access (Figure 4(b)), the SICS core can be invoked via the SICS Remote Module
as a SOAP web service or EJB component (using SOAP/RMI). This scenario
should be followed when the service is a part of a distributed system, but for
some reasons (e.g. limited resources of the client, such as in portable devices)
there is no need or opportunity for using the SICS Remote Client. However, in
this case the application must take care of communicating with the service. (iii)
The easiest way to add recommendation service in an application is to access the
IC-Service via the SICS Remote Client (Figure 4(c)) that hides the technical
details of the communication mechanism from the application designer. This way
should be adopted when we deal with complex applications and the IC-Service
must be introduced in a fully decoupled way.

(a) SICS as a library (b) SICS as a service (c) SICS as a service via SICS

Remote Client

Fig. 4. SICS invocation scenarios

5 http://www.hibernate.org/



The described scenarios illustrate the possibility of including the IC-Service
in various applications ranging from small-size applications to complex distrib-
uted systems. The IC-Service is developed with JAX-RPC (Java API for XML-
based Remote Procedure Calls6), a programming model that enables invocation
of web services across heterogeneous platforms. The SICS modules are built
using the Spring framework, which allows assembling of loosely-coupled compo-
nents in a complex system via XML configuration files. All modules apart from
the Storage Module and the Rule Storage Module communicate through Java
function calls and serializable objects. By avoiding Java collections, the easier
interoperability with SOAP is enabled.

SOA has been chosen among the possible architectures because it supports
principles of universal access and platform independence and allows recommen-
dation service to be transparently located inside or outside the enterprise. Sup-
port of EJB technology simplifies the use of the IC-Service in applications devel-
oped with Java technology. The Storage Module supports two possible storage
facilities: XML files and the database storage. XML files provide a simple, easily
deployable, and portable solution for applications where the observation history
is not big and must not be accessed frequently. The database variant should be
chosen with more complex applications involving heavy data processing.

The IC-Service can be added in an application in a fully decoupled way,
and accessed from anywhere at any time. This guarantees ubiquity, allowing
the system to produce sound recommendations using data collected from dif-
ferent sources. For instance, ubiquity is very useful in the problem of providing
cross-selling recommendations. Several communicating IC-Services can be seen
as building blocks in the development of an efficient and robust decentralized
recommendation system. At the same time, the IC-Service is a general-purpose
and domain-independent application that provides means for storing, analyzing
and reasoning about the observed behavior. It presents a higher granularity than
specialized recommendation modules. Once deployed, the IC-Service can be used
by several applications. Changes and extensions can be smoothly embedded in
the working system by modifying XML-based domain description or the the-
ory. This leads to minimizing efforts on development and reducing overheads on
support of heterogeneous systems.

4 IC-Service-based Applications

In this section we describe ongoing projects which use the IC-Service: QUIEW,
IC-SWSD, and the system that supports the work of biologists.

The QUIEW project7, lead by ITC-IRST, aims at providing methods for an
appropriate ordering of the Web content according to a list of categories, which
represent topics of interests. The relevance feedback is used to provide more
effective organization of the information. In the context of this project, the IC-
Service provides recommendation on web documents classification. In particular,
6 http://java.sun.com/webservices/jaxrpc/
7 QUIEW. Quality-based Indexing of Web Information. http://quiew.itc.it/



the knowledge engineer is offered a set of potentially relevant categories for a
given document. These recommendations are based on the history of previous
interactions of users with the system. The QUIEW application accesses the IC-
Service as a web service via the SICS Remote Client and the SICS Remote
Module. The SOAP protocol is used for the information exchange between the
SICS Remote Client and the SICS Remote Module. The Storage Module uses
XML files to store the data.

The second application is a framework for supporting web service discov-
ery, IC-SWSD (Implicit Culture Support for Web Service Discovery). In this
scenario, users are interested in finding services that can provide a predefined
functionality and guarantee a certain level of quality. The discovery process con-
sists of two steps: (1) matching, i.e., meeting the functionality required by a user
with specifications of existing services, and (2) selection, i.e., choosing a service
with the best quality among those able to satisfy a user’s goal. Service clients
are software applications that rely on external services to fulfill some interven-
ing tasks. The results of the operations produced by external services are either
verified automatically or analyzed by a human. This evaluation can be used to
augment the knowledge about the existing services and their features that may
not be explicitly stated in service documentation and interface description (even
with ontology-based semantic extensions). We suppose that virtual communities
of the users with similar interests exist, and their members will benefit from
recommendations produced by the IC-Services based on the observations of the
actions of other community members.

In our preliminary tests, we extended the Apache Axis framework with the
ability of monitoring service invocations using the IC-Service. For each invo-
cation we save the identifier of the client with attributes (e.g., user name and
location), the identifier of the web service with attributes (e.g., business cate-
gory), name of the invoked operation with input and output parameters, time of
the invocation and service response time. This allows for taking into account pa-
rameters such as average response time, throughput, success rate, etc. The client
can add other important information such as report about cases of contract vi-
olation and store domain-specific parameters like book prices for book-selling
services. Quality of Service (QoS) ontologies can be involved to enable formal
knowledge-based reasoning [8]. The collected data are used to map the needs of
new clients with the services that might satisfy those needs.

In case of several IC-Services, they collaborate in order to recommend more
suitable web services in the context of a certain community. Thus, search results
are complemented with the recommendations produced by the system. The ba-
sic data transfer process is shown in Figure 5. Community members develop
applications that use external web services. The communication between these
applications and web services is monitored using the IC-Service. When a new
user submits a query, the IC-Service matches the user’s request with the spec-
ifications of the registered services, analyzes the monitored data, communicate
with other IC-Services and selects a set of potentially useful services with the
best quality regarding the user’s personal preferences. In addition, the presented



Fig. 5. The application of the IC-Service to web service discovery

framework can be used for extraction of interaction patterns and distributed
semantic caching for web services [9].

We are currently working on the development of a system based on the IC-
Service to support the work of biologists in their laboratories, adopting the ap-
proach presented in [10]. It is aimed at assisting the scientists during Polymerase
Chain Reaction (PCR) experiments [11]. The PCR, being an important part of
many pieces of the state-of-the-art research, is still capricious and problematic
procedure and each laboratory has its own PCR specifics. The system being
created will help inexperienced biologists or laboratory newcomers to increase
success/failure rate of the experiments by providing them with the suggestions
induced from observed actions of their more experienced colleagues.

In all above-mentioned applications, the use of the IC-Service has shown the
following advantages: (i) the service can be accessed from any workplace, en-
abling distributed collection of observations; (ii) several clients can use the same
service that adapts for their needs; (iii) it is a unique solution for highly distrib-
uted communities; (iv) the knowledge transfer within/between communities is
facilitated. Moreover, in the context of web service discovery, it is the first (as
far as we know) implementation of a system that recommends web services8.

We performed preliminary performance tests of the IC-Service, which have
shown that a reasonable response time can be achieved even in case of using
XML storage with more than 10,000 observations and having about 100 clients
continuously querying the system.

5 Lessons Learnt

Web service technology simplifies the development of recommendation systems
and allows for the integration of the recommendation service to existing systems.
However, there are several open questions regarding the design of services to
be used as long-lived loosely-coupled components of distributed systems. What
makes the IC-Service different from standard information services such as book-
selling service is that it (i) is oriented on the use in various application domains,
(ii) processes client data according to the rules defined for a particular applica-
tion domain, (iii) supports storage of potentially huge amount of clients’ data,
8 The need for such kind of systems has been announced in [8]



(iv) analyzes the collected information in order to adapt the provided function-
ality to the needs of a particular client. The principles underlying the design
of such services are not well-established yet. Curbera et al. [12] describe cus-
tomization of SOA components as one of the key characteristics. They argue
that “a SOA programming model should enable building services and modules
that programmers can customize without source code modification”. Indeed, it
is unlikely that a service can be reused by different applications without recon-
figuration. For its nature, the IC-Service has a direct dependence on the context
of application and must be customizable. Therefore, configurability and exten-
sibility without code modification were the main focus of the design process. To
reach the necessary properties such as adequate level of granularity, flexible con-
figuration mechanism, powerful storage and data management facilities, etc., we
used state-of-the-art tools and solutions, namely, the combination of the original
Implicit Culture theory with design patterns (“Adapter”, “Proxy”, “Facade”,
“Abstract Factory”, “Factory Method”, etc.) [13], Aspect-Oriented Program-
ming and auxiliary frameworks such as Spring and its principle of “designing to
interfaces”.

Multilevel organization of features and support of both XML and database
storages are involved to satisfy the portability and scalability requirements. XML
storage format imposes restrictions on the number of observations that can be
stored. These restrictions can be overcome using database storage or deploying
several instances of the IC-Service. To increase the performance, operations re-
sponsible for storing observations run in separate threads or JMSs (Java Message
Services) under J2EE environment. Independent and configurable cache9 is used
at each functional level.

6 Conclusion and Future Work

In this paper a service oriented architecture for the development of recommenda-
tion systems has been proposed. We presented the IC-Service, a general-purpose
web service that uses the ideas of the Implicit Culture theory to produce recom-
mendations. Our application has a tangible motivation for SOA that provides a
way to increase the level of organization and management of systems embedding
recommendation services and supporting autonomous members of communities.

We believe that the synergetic compatibility between SOA and SICS can
guarantee success of the SICS in many application domains. Along with the uni-
form mechanisms to store and retrieve observations, analyze actions, extract be-
havioral patterns and produce recommendations, our approach becomes a cheap
and transparent solution in the area of recommendation systems.

As future work, we would like to develop a wizard to configure and deploy
IC-Services. In addition, we are going to build networks of several IC-Services
and evaluate mechanisms for combining their recommendations.

9 http://ehcache.sourceforge.net/



7 Acknowledgements

This work is partly funded by research projects EU SERENITY “System En-
gineering for Security and Dependability”, COFIN “Artificial Intelligence Tech-
niques for the Retrieval of High Quality Information on the Web” and by Fondo
Progetti PAT, MOSTRO “Modeling Security and Trust Relationships within
Organizations” and QUIEW (Quality-based indexing of the Web), art. 9, Legge
Provinciale 3/2000, DGP n. 1587 dd. 09/07/04.

We would like to thank Hananto Widhi Santoso for his help in implementing
part of the system.

References

1. Tremblay-Beaumont, H., Aı̈meur, E.: Jukeblog : A recommender system in the
music weblogs. In: Proc. of the IADIS Int. Conference on e-Commerce. (2005)
274–280

2. Linden, G., Smith, B., York, J.: Amazon.com recommendations: Item-to-item
collaborative filtering. IEEE Internet Computing 7(1) (2003) 76–80

3. Birukov, A., Blanzieri, E., Giorgini, P.: Implicit: An agent-based recommendation
system for web search. In: AAMAS: Proc. of the 4th Int. Joint Conference on
Autonomous Agents and Multiagent Systems, ACM Press (2005) 618–624

4. Schafer, J.B., Konstan, J.A., Riedl, J.: Meta-recommendation systems: user-
controlled integration of diverse recommendations. In: Proc. of the 11th Int. Con-
ference on Information and Knowledge Management, ACM Press (2002) 43–51

5. Blanzieri, E., Giorgini, P., Massa, P., Recla, S.: Implicit culture for multi-agent
interaction support. In: CooplS: Proc. of the 9th Int. Conference on Cooperative
Information Systems. Volume 2172 of LNCS., Springer (2001) 27–39

6. Schafer, J.B., Konstan, J.A., Riedl, J.: E-commerce recommendation applications.
Data Mining and Knowledge Discovery 5(1-2) (2001) 115–153

7. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: VLDB: Proc. of the 20th Int. Conference on Very Large Data
Bases, Morgan Kaufmann (1994) 487–499

8. Maximilien, E.M., Singh, M.P.: A framework and ontology for dynamic web ser-
vices selection. IEEE Internet Computing 8(5) (2004) 84–93

9. Seltzsam, S., Holzhauser, R., Kemper, A.: Semantic cashing for web services. In:
ICSOC: Proc. of the 3d Int. Conference on Service-Oriented Computing. Volume
3826 of LNCS., Springer (2005) 324–340

10. Sarini, M., Blanzieri, E., Giorgini, P., Moser, C.: From actions to suggestions:
supporting the work of biologists through laboratory notebooks. In: COOP: Proc.
of 6th Int. Conference on the Design of Cooperative Systems, IOSPress (2004)
131–146

11. Mullis, K.B., Faloona, F.A., Scharf, S., Saiki, R.K., Horn, G., Erlich, H.A.: Specific
enzymatic amplification of dna in vitro: the polymerase chain reaction. In: Cold
Spring Harbor Symposia on Quantitative Biology. Volume 51. (1986) 263–273

12. Curbera, F., Ferguson, D.F., Nally, M., Stockton, M.L.: Toward a programming
model for service-oriented computing. In: ICSOC: Proc. of the 3d Int. Conference
on Service-Oriented Computing. Volume 2172 of LNCS., Springer (2005) 33–47

13. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison-Wesley, Boston, MA, USA (1995)


