70 research outputs found

    Face Recognition Using Self-Organizing Maps

    Get PDF

    Development of Mobile Face Verification Based on Locally Normalized Gabor Wavelets

    Get PDF
    In this paper, we present a mobile face verification framework for automated attendance monitoring as a solution for more efficient, portable and cost-effective attendance monitoring systems. We use Raspberry Pi as mobile embedded input module connecting the webcam and radio frequency identification (RFID) reader to the personal computer (PC) which provides mobility due to its light weight and wireless connectivity. In order to increase the reliability of the system, we incorporate a face verification method which employs locally-normalized Gabor Wavelets as the features for dual verification stage. We evaluate the accuracy and processing time of the proposed face verification. It found that it produces good accuracy under limited reference sample constraint and fast response for small number of gallery images. The proposed method delivers 97%, 99.8% and 95.3% accuracy for AR, YALE B and FERET datasets. In term of processing speed, the proposed method managed to classify a single image against 500 gallery images in 1.909 seconds. The system delivers fast verification with high accuracy under the constraint of just single reference sample, which increases the reliability of the proposed system

    Preliminary results on nonparametric facial occlusion detection

    Get PDF
    The problem of face recognition has been extensively studied in the available literature, however, some aspects of this field require further research. The design and implementation of face recognition systems that can efficiently handle unconstrained conditions (e.g. pose variations, illumination, partial occlusion...) is still an area under active research. This work focuses on the design of a new nonparametric occlusion detection technique. In addition, we present some preliminary results that indicate that the proposed technique might be useful to face recognition systems, allowing them to dynamically discard occluded face parts

    A survey of face recognition techniques under occlusion

    Get PDF
    The limited capacity to recognize faces under occlusions is a long-standing problem that presents a unique challenge for face recognition systems and even for humans. The problem regarding occlusion is less covered by research when compared to other challenges such as pose variation, different expressions, etc. Nevertheless, occluded face recognition is imperative to exploit the full potential of face recognition for real-world applications. In this paper, we restrict the scope to occluded face recognition. First, we explore what the occlusion problem is and what inherent difficulties can arise. As a part of this review, we introduce face detection under occlusion, a preliminary step in face recognition. Second, we present how existing face recognition methods cope with the occlusion problem and classify them into three categories, which are 1) occlusion robust feature extraction approaches, 2) occlusion aware face recognition approaches, and 3) occlusion recovery based face recognition approaches. Furthermore, we analyze the motivations, innovations, pros and cons, and the performance of representative approaches for comparison. Finally, future challenges and method trends of occluded face recognition are thoroughly discussed

    People identification and tracking through fusion of facial and gait features

    Get PDF
    This paper reviews the contemporary (face, gait, and fusion) computational approaches for automatic human identification at a distance. For remote identification, there may exist large intra-class variations that can affect the performance of face/gait systems substantially. First, we review the face recognition algorithms in light of factors, such as illumination, resolution, blur, occlusion, and pose. Then we introduce several popular gait feature templates, and the algorithms against factors such as shoe, carrying condition, camera view, walking surface, elapsed time, and clothing. The motivation of fusing face and gait, is that, gait is less sensitive to the factors that may affect face (e.g., low resolution, illumination, facial occlusion, etc.), while face is robust to the factors that may affect gait (walking surface, clothing, etc.). We review several most recent face and gait fusion methods with different strategies, and the significant performance gains suggest these two modality are complementary for human identification at a distance

    People identification and tracking through fusion of facial and gait features

    Get PDF
    This paper reviews the contemporary (face, gait, and fusion) computational approaches for automatic human identification at a distance. For remote identification, there may exist large intra-class variations that can affect the performance of face/gait systems substantially. First, we review the face recognition algorithms in light of factors, such as illumination, resolution, blur, occlusion, and pose. Then we introduce several popular gait feature templates, and the algorithms against factors such as shoe, carrying condition, camera view, walking surface, elapsed time, and clothing. The motivation of fusing face and gait, is that, gait is less sensitive to the factors that may affect face (e.g., low resolution, illumination, facial occlusion, etc.), while face is robust to the factors that may affect gait (walking surface, clothing, etc.). We review several most recent face and gait fusion methods with different strategies, and the significant performance gains suggest these two modality are complementary for human identification at a distance

    Face Recognition Using Ensemble String Matching

    Full text link
    • …
    corecore