74 research outputs found

    Handwritten OCR for Indic Scripts: A Comprehensive Overview of Machine Learning and Deep Learning Techniques

    Get PDF
    The potential uses of cursive optical character recognition, commonly known as OCR, in a number of industries, particularly document digitization, archiving, even language preservation, have attracted a lot of interest lately. In the framework of optical character recognition (OCR), the goal of this research is to provide a thorough understanding of both cutting-edge methods and the unique difficulties presented by Indic scripts. A thorough literature search was conducted in order to conduct this study, during which time relevant publications, conference proceedings, and scientific files were looked for up to the year 2023. As a consequence of the inclusion criteria that were developed to concentrate on studies only addressing Handwritten OCR on Indic scripts, 53 research publications were chosen as the process's outcome. The review provides a thorough analysis of the methodology and approaches employed in the chosen study. Deep neural networks, conventional feature-based methods, machine learning techniques, and hybrid systems have all been investigated as viable answers to the problem of effectively deciphering Indian scripts, because they are famously challenging to write. To operate, these systems require pre-processing techniques, segmentation schemes, and language models. The outcomes of this methodical examination demonstrate that despite the fact that Hand Scanning for Indic script has advanced significantly, room still exists for advancement. Future research could focus on developing trustworthy models that can handle a range of writing styles and enhance accuracy using less-studied Indic scripts. This profession may advance with the creation of collected datasets and defined standards

    Automatic handwriter identification using advanced machine learning

    Get PDF
    Handwriter identification a challenging problem especially for forensic investigation. This topic has received significant attention from the research community and several handwriter identification systems were developed for various applications including forensic science, document analysis and investigation of the historical documents. This work is part of an investigation to develop new tools and methods for Arabic palaeography, which is is the study of handwritten material, particularly ancient manuscripts with missing writers, dates, and/or places. In particular, the main aim of this research project is to investigate and develop new techniques and algorithms for the classification and analysis of ancient handwritten documents to support palaeographic studies. Three contributions were proposed in this research. The first is concerned with the development of a text line extraction algorithm on colour and greyscale historical manuscripts. The idea uses a modified bilateral filtering approach to adaptively smooth the images while still preserving the edges through a nonlinear combination of neighboring image values. The proposed algorithm aims to compute a median and a separating seam and has been validated to deal with both greyscale and colour historical documents using different datasets. The results obtained suggest that our proposed technique yields attractive results when compared against a few similar algorithms. The second contribution proposes to deploy a combination of Oriented Basic Image features and the concept of graphemes codebook in order to improve the recognition performances. The proposed algorithm is capable to effectively extract the most distinguishing handwriter’s patterns. The idea consists of judiciously combining a multiscale feature extraction with the concept of grapheme to allow for the extraction of several discriminating features such as handwriting curvature, direction, wrinkliness and various edge-based features. The technique was validated for identifying handwriters using both Arabic and English writings captured as scanned images using the IAM dataset for English handwriting and ICFHR 2012 dataset for Arabic handwriting. The results obtained clearly demonstrate the effectiveness of the proposed method when compared against some similar techniques. The third contribution is concerned with an offline handwriter identification approach based on the convolutional neural network technology. At the first stage, the Alex-Net architecture was employed to learn image features (handwritten scripts) and the features obtained from the fully connected layers of the model. Then, a Support vector machine classifier is deployed to classify the writing styles of the various handwriters. In this way, the test scripts can be classified by the CNN training model for further classification. The proposed approach was evaluated based on Arabic Historical datasets; Islamic Heritage Project (IHP) and Qatar National Library (QNL). The obtained results demonstrated that the proposed model achieved superior performances when compared to some similar method

    Advancements and Challenges in Arabic Optical Character Recognition: A Comprehensive Survey

    Full text link
    Optical character recognition (OCR) is a vital process that involves the extraction of handwritten or printed text from scanned or printed images, converting it into a format that can be understood and processed by machines. This enables further data processing activities such as searching and editing. The automatic extraction of text through OCR plays a crucial role in digitizing documents, enhancing productivity, improving accessibility, and preserving historical records. This paper seeks to offer an exhaustive review of contemporary applications, methodologies, and challenges associated with Arabic Optical Character Recognition (OCR). A thorough analysis is conducted on prevailing techniques utilized throughout the OCR process, with a dedicated effort to discern the most efficacious approaches that demonstrate enhanced outcomes. To ensure a thorough evaluation, a meticulous keyword-search methodology is adopted, encompassing a comprehensive analysis of articles relevant to Arabic OCR, including both backward and forward citation reviews. In addition to presenting cutting-edge techniques and methods, this paper critically identifies research gaps within the realm of Arabic OCR. By highlighting these gaps, we shed light on potential areas for future exploration and development, thereby guiding researchers toward promising avenues in the field of Arabic OCR. The outcomes of this study provide valuable insights for researchers, practitioners, and stakeholders involved in Arabic OCR, ultimately fostering advancements in the field and facilitating the creation of more accurate and efficient OCR systems for the Arabic language

    ONLINE ARABIC TEXT RECOGNITION USING STATISTICAL TECHNIQUES

    Get PDF
    • …
    corecore