11 research outputs found

    The Benefits of Word Embeddings Features for Active Learning in Clinical Information Extraction

    Get PDF
    This study investigates the use of unsupervised word embeddings and sequence features for sample representation in an active learning framework built to extract clinical concepts from clinical free text. The objective is to further reduce the manual annotation effort while achieving higher effectiveness compared to a set of baseline features. Unsupervised features are derived from skip-gram word embeddings and a sequence representation approach. The comparative performance of unsupervised features and baseline hand-crafted features in an active learning framework are investigated using a wide range of selection criteria including least confidence, information diversity, information density and diversity, and domain knowledge informativeness. Two clinical datasets are used for evaluation: the i2b2/VA 2010 NLP challenge and the ShARe/CLEF 2013 eHealth Evaluation Lab. Our results demonstrate significant improvements in terms of effectiveness as well as annotation effort savings across both datasets. Using unsupervised features along with baseline features for sample representation lead to further savings of up to 9% and 10% of the token and concept annotation rates, respectively

    Improving Syntactic Parsing of Clinical Text Using Domain Knowledge

    Get PDF
    Syntactic parsing is one of the fundamental tasks of Natural Language Processing (NLP). However, few studies have explored syntactic parsing in the medical domain. This dissertation systematically investigated different methods to improve the performance of syntactic parsing of clinical text, including (1) Constructing two clinical treebanks of discharge summaries and progress notes by developing annotation guidelines that handle missing elements in clinical sentences; (2) Retraining four state-of-the-art parsers, including the Stanford parser, Berkeley parser, Charniak parser, and Bikel parser, using clinical treebanks, and comparing their performance to identify better parsing approaches; and (3) Developing new methods to reduce syntactic ambiguity caused by Prepositional Phrase (PP) attachment and coordination using semantic information. Our evaluation showed that clinical treebanks greatly improved the performance of existing parsers. The Berkeley parser achieved the best F-1 score of 86.39% on the MiPACQ treebank. For PP attachment, our proposed methods improved the accuracies of PP attachment by 2.35% on the MiPACQ corpus and 1.77% on the I2b2 corpus. For coordination, our method achieved a precision of 94.9% and a precision of 90.3% for the MiPACQ and i2b2 corpus, respectively. To further demonstrate the effectiveness of the improved parsing approaches, we applied outputs of our parsers to two external NLP tasks: semantic role labeling and temporal relation extraction. The experimental results showed that performance of both tasks’ was improved by using the parse tree information from our optimized parsers, with an improvement of 3.26% in F-measure for semantic role labelling and an improvement of 1.5% in F-measure for temporal relation extraction

    Named Entity Recognition in Chinese Clinical Text

    Get PDF
    Objective: Named entity recognition (NER) is one of the fundamental tasks in natural language processing (NLP). In the medical domain, there have been a number of studies on NER in English clinical notes; however, very limited NER research has been done on clinical notes written in Chinese. The goal of this study is to develop corpora, methods, and systems for NER in Chinese clinical text. Materials and methods: To study entities in Chinese clinical text, we started with building annotated clinical corpora in Chinese. We developed an NER annotation guideline in Chinese by extending the one used in the 2010 i2b2 NLP challenge. We randomly selected 400 admission notes and 400 discharge summaries from Peking Union Medical College Hospital (PUMCH) in China. For each note, four types of entities including clinical problems, procedures, labs, and medications were annotated according to the developed guideline. In addition, an annotation tool was developed to assist two MD students to annotate Chinese clinical documents. A comparison of entity distribution between Chinese and English clinical notes (646 English and 400 Chinese discharge summaries) was performed using the annotated corpora, to identify the important features for NER. In the NER study, two-thirds of the 400 notes were used for training the NER systems and one-third were used for testing. We investigated the effects of different types of features including bag-of-characters, word segmentation, part-of-speech, and section information, with different machine learning (ML) algorithms including Conditional Random Fields (CRF), Support Vector Machines (SVM), Maximum Entropy (ME), and Structural Support Vector Machines (SSVM) on the Chinese clinical NER task. All classifiers were trained on the training dataset, evaluated on the test set, and microaveraged precision, recall, and F-measure were reported. Results: Our evaluation on the independent test set showed that most types of features were beneficial to Chinese NER systems, although the improvements were limited. By combining word segmentation and section information, the system achieved the highest performance, indicating that these two types of features are complementary to each other. When the same types of optimized features were used, CRF and SSVM outperformed SVM and ME. More specifically, SSVM reached the highest performance among the four algorithms, with F-measures of 93.51% and 90.01% for admission notes and discharge summaries respectively. Conclusions: In this study, we created large annotated datasets of Chinese admission notes and discharge summaries and then systematically evaluated different types of features (e.g., syntactic, semantic, and segmentation information) and four ML algorithms including CRF, SVM, SSVM, and ME for clinical NER in Chinese. To the best of our knowledge, this is one of the earliest comprehensive effort in Chinese clinical NER research and we believe it will provide valuable insights to NLP research in Chinese clinical text. Our results suggest that both word segmentation and section information improves NER in Chinese clinical text, and SSVM, a recent sequential labelling algorithm, outperformed CRF and other classification algorithms. Our best system achieved F-measures of 90.01% and 93.52% on Chinese discharge summaries and admission notes, respectively, indicating a promising start on Chinese NLP research

    Towards semantic interpretation of clinical narratives with ontology-based text mining

    Get PDF
    In the realm of knee pathology, magnetic resonance imaging (MRI) has the advantage of visualising all structures within the knee joint, which makes it a valuable tool for increasing diagnostic accuracy and planning surgical treatments. Therefore, clinical narratives found in MRI reports convey valuable diagnostic information. A range of studies have proven the feasibility of natural language processing for information extraction from clinical narratives. However, no study focused specifically on MRI reports in relation to knee pathology, possibly due to the complexity of knee anatomy and a wide range of conditions that may be associated with different anatomical entities. In this thesis, we describe KneeTex, an information extraction system that operates in this domain. As an ontology-driven information extraction system, KneeTex makes active use of an ontology to strongly guide and constrain text analysis. We used automatic term recognition to facilitate the development of a domain-specific ontology with sufficient detail and coverage for text mining applications. In combination with the ontology, high regularity of the sublanguage used in knee MRI reports allowed us to model its processing by a set of sophisticated lexico-semantic rules with minimal syntactic analysis. The main processing steps involve named entity recognition combined with coordination, enumeration, ambiguity and co-reference resolution, followed by text segmentation. Ontology-based semantic typing is then used to drive the template filling process. We adopted an existing ontology, TRAK (Taxonomy for RehAbilitation of Knee conditions), for use within KneeTex. The original TRAK ontology expanded from 1,292 concepts, 1,720 synonyms and 518 relationship instances to 1,621 concepts, 2,550 synonyms and 560 relationship instances. This provided KneeTex with a very fine-grained lexicosemantic knowledge base, which is highly attuned to the given sublanguage. Information extraction results were evaluated on a test set of 100 MRI reports. A gold standard consisted of 1,259 filled template records with the following slots: finding, finding qualifier, negation, certainty, anatomy and anatomy qualifier. KneeTex extracted information with precision of 98.00%, recall of 97.63% and F-measure of 97.81%, the values of which are in line with human-like performance. To demonstrate the utility of formally structuring clinical narratives and possible applications in epidemiology, we describe an implementation of KneeBase, a web-based information retrieval system that supports complex searches over the results obtained via KneeTex. It is the structured nature of extracted information that allows queries that encode not only search terms, but also relationships between them (e.g. between clinical findings and anatomical locations). This is of particular value for large-scale epidemiology studies based on qualitative evidence, whose main bottleneck involves manual inspection of many text documents. The two systems presented in this dissertation, KneeTex and KneeBase, operate in a specific domain, but illustrate generic principles for rapid development of clinical text mining systems. The key enabler of such systems is the existence of an appropriate ontology. To tackle this issue, we proposed a strategy for ontology expansion, which proved effective in fast–tracking the development of our information extraction and retrieval systems

    Recognising Biomedical Names: Challenges and Solutions

    Get PDF
    The growth rate in the amount of biomedical documents is staggering. Unlocking information trapped in these documents can enable researchers and practitioners to operate confidently in the information world. Biomedical Named Entity Recognition (NER), the task of recognising biomedical names, is usually employed as the first step of the NLP pipeline. Standard NER models, based on sequence tagging technique, are good at recognising short entity mentions in the generic domain. However, there are several open challenges of applying these models to recognise biomedical names: â—Ź Biomedical names may contain complex inner structure (discontinuity and overlapping) which cannot be recognised using standard sequence tagging technique; â—Ź The training of NER models usually requires large amount of labelled data, which are difficult to obtain in the biomedical domain; and, â—Ź Commonly used language representation models are pre-trained on generic data; a domain shift therefore exists between these models and target biomedical data. To deal with these challenges, we explore several research directions and make the following contributions: (1) we propose a transition-based NER model which can recognise discontinuous mentions; (2) We develop a cost-effective approach that nominates the suitable pre-training data; and, (3) We design several data augmentation methods for NER. Our contributions have obvious practical implications, especially when new biomedical applications are needed. Our proposed data augmentation methods can help the NER model achieve decent performance, requiring only a small amount of labelled data. Our investigation regarding selecting pre-training data can improve the model by incorporating language representation models, which are pre-trained using in-domain data. Finally, our proposed transition-based NER model can further improve the performance by recognising discontinuous mentions
    corecore