1,926 research outputs found

    Detecting wheels

    Full text link
    A \emph{wheel} is a graph made of a cycle of length at least~4 together with a vertex that has at least three neighbors in the cycle. We prove that the problem whose instance is a graph GG and whose question is "does GG contains a wheel as an induced subgraph" is NP-complete. We also settle the complexity of several similar problems

    On Box-Perfect Graphs

    Get PDF
    Let G=(V,E)G=(V,E) be a graph and let AGA_G be the clique-vertex incidence matrix of GG. It is well known that GG is perfect iff the system AGx1A_{_G}\mathbf x\le \mathbf 1, x0\mathbf x\ge\mathbf0 is totally dual integral (TDI). In 1982, Cameron and Edmonds proposed to call GG box-perfect if the system AGx1A_{_G}\mathbf x\le \mathbf 1, x0\mathbf x\ge\mathbf0 is box-totally dual integral (box-TDI), and posed the problem of characterizing such graphs. In this paper we prove the Cameron-Edmonds conjecture on box-perfectness of parity graphs, and identify several other classes of box-perfect graphs. We also develop a general and powerful method for establishing box-perfectness

    The Complexity of Helly-B1B_{1} EPG Graph Recognition

    Full text link
    Golumbic, Lipshteyn, and Stern defined in 2009 the class of EPG graphs, the intersection graph class of edge paths on a grid. An EPG graph GG is a graph that admits a representation where its vertices correspond to paths in a grid QQ, such that two vertices of GG are adjacent if and only if their corresponding paths in QQ have a common edge. If the paths in the representation have at most kk bends, we say that it is a BkB_k-EPG representation. A collection CC of sets satisfies the Helly property when every sub-collection of CC that is pairwise intersecting has at least one common element. In this paper, we show that given a graph GG and an integer kk, the problem of determining whether GG admits a BkB_k-EPG representation whose edge-intersections of paths satisfy the Helly property, so-called Helly-BkB_k-EPG representation, is in NP, for every kk bounded by a polynomial function of V(G)|V(G)|. Moreover, we show that the problem of recognizing Helly-B1B_1-EPG graphs is NP-complete, and it remains NP-complete even when restricted to 2-apex and 3-degenerate graphs
    corecore