6 research outputs found

    PRELIMINARY FINDINGS OF A POTENZIATED PIEZOSURGERGICAL DEVICE AT THE RABBIT SKULL

    Get PDF
    The number of available ultrasonic osteotomes has remarkably increased. In vitro and in vivo studies have revealed differences between conventional osteotomes, such as rotating or sawing devices, and ultrasound-supported osteotomes (Piezosurgery®) regarding the micromorphology and roughness values of osteotomized bone surfaces. Objective: the present study compares the micro-morphologies and roughness values of osteotomized bone surfaces after the application of rotating and sawing devices, Piezosurgery Medical® and Piezosurgery Medical New Generation Powerful Handpiece. Methods: Fresh, standard-sized bony samples were taken from a rabbit skull using the following osteotomes: rotating and sawing devices, Piezosurgery Medical® and a Piezosurgery Medical New Generation Powerful Handpiece. The required duration of time for each osteotomy was recorded. Micromorphologies and roughness values to characterize the bone surfaces following the different osteotomy methods were described. The prepared surfaces were examined via light microscopy, environmental surface electron microscopy (ESEM), transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM) and atomic force microscopy. The selective cutting of mineralized tissues while preserving adjacent soft tissue (dura mater and nervous tissue) was studied. Bone necrosis of the osteotomy sites and the vitality of the osteocytes near the sectional plane were investigated, as well as the proportion of apoptosis or cell degeneration. Results and Conclusions: The potential positive effects on bone healing and reossification associated with different devices were evaluated and the comparative analysis among the different devices used was performed, in order to determine the best osteotomes to be employed during cranio-facial surgery

    Obesity-induced chronic inflammation in C57Bl6J mice, a novel risk factor in the progression of renal AA amyloidosis?

    Get PDF
    Background: Compelling evidence links obesity induced systemic inflammation to the development of chronic kidney disease (CKD). This systemic inflammation may result from exacerbated adipose inflammation. Besides the known detrimental effects of typical pro-inflammatory factors secreted by the adipose tissue (TNF-α, MCP-1 and IL-6) on the kidney, we hypothesize the enhanced obesity-induced secretion of serum amyloid A (SAA), an acute inflammatory protein, to play a key role in aggravating obesity-induced CKD. Methods: Groups of male C57Bl/6J mice (n = 99 in total) were fed a low (10% lard) or high (45% lard) fat diet for a maximum of 52 weeks. Mice were sacrificed after 24, 40 and 52 weeks. Whole blood samples, kidneys and adipose tissues were collected. The development of adipose and renal tissue inflammation was assessed on gene expression and protein level. Adipocytokine levels were measured in plasma samples. Results: A distinct inflammatory phenotype was observed in the adipose tissue of HFD mice prior to renal inflammation, which was associated with an early systemic elevation of TNF-α, leptin and SAA (1A-C). With aging, sclerotic lesions appeared in the kidney, the extent of which was severely aggravated by HFD feeding. Lesions exhibited typical amyloid characteristics (2A) and pathological severity positively correlated with bodyweight (2B). Interestingly, more SAA protein was detected in lesions of HFD mice. Conclusion: Our data suggest a causal link between obesity induced chronic inflammation and AA amyloidosis in C57Bl/6J mice. Though future studies are necessary to prove this causal link and to determine its relevance for the human situation, obesity may hence be considered a risk factor for the development and progression of renal AA amyloidosis in the course of CKD. (Figure Presented)

    30th European Congress on Obesity (ECO 2023)

    Get PDF
    This is the abstract book of 30th European Congress on Obesity (ECO 2023

    Pacific Symposium on Biocomputing 2023

    Get PDF
    The Pacific Symposium on Biocomputing (PSB) 2023 is an international, multidisciplinary conference for the presentation and discussion of current research in the theory and application of computational methods in problems of biological significance. Presentations are rigorously peer reviewed and are published in an archival proceedings volume. PSB 2023 will be held on January 3-7, 2023 in Kohala Coast, Hawaii. Tutorials and workshops will be offered prior to the start of the conference.PSB 2023 will bring together top researchers from the US, the Asian Pacific nations, and around the world to exchange research results and address open issues in all aspects of computational biology. It is a forum for the presentation of work in databases, algorithms, interfaces, visualization, modeling, and other computational methods, as applied to biological problems, with emphasis on applications in data-rich areas of molecular biology.The PSB has been designed to be responsive to the need for critical mass in sub-disciplines within biocomputing. For that reason, it is the only meeting whose sessions are defined dynamically each year in response to specific proposals. PSB sessions are organized by leaders of research in biocomputing's 'hot topics.' In this way, the meeting provides an early forum for serious examination of emerging methods and approaches in this rapidly changing field
    corecore