45 research outputs found

    Unconstrained Scene Text and Video Text Recognition for Arabic Script

    Full text link
    Building robust recognizers for Arabic has always been challenging. We demonstrate the effectiveness of an end-to-end trainable CNN-RNN hybrid architecture in recognizing Arabic text in videos and natural scenes. We outperform previous state-of-the-art on two publicly available video text datasets - ALIF and ACTIV. For the scene text recognition task, we introduce a new Arabic scene text dataset and establish baseline results. For scripts like Arabic, a major challenge in developing robust recognizers is the lack of large quantity of annotated data. We overcome this by synthesising millions of Arabic text images from a large vocabulary of Arabic words and phrases. Our implementation is built on top of the model introduced here [37] which is proven quite effective for English scene text recognition. The model follows a segmentation-free, sequence to sequence transcription approach. The network transcribes a sequence of convolutional features from the input image to a sequence of target labels. This does away with the need for segmenting input image into constituent characters/glyphs, which is often difficult for Arabic script. Further, the ability of RNNs to model contextual dependencies yields superior recognition results.Comment: 5 page

    Recognition of off-line printed Arabic text using Hidden Markov Models.

    Get PDF
    yesThis paper describes a technique for automatic recognition of off-line printed Arabic text using Hidden Markov Models. In this work different sizes of overlapping and non-overlapping hierarchical windows are used to generate 16 features from each vertical sliding strip. Eight different Arabic fonts were used for testing (viz. Arial, Tahoma, Akhbar, Thuluth, Naskh, Simplified Arabic, Andalus, and Traditional Arabic). It was experimentally proven that different fonts have their highest recognition rates at different numbers of states (5 or 7) and codebook sizes (128 or 256). Arabic text is cursive, and each character may have up to four different shapes based on its location in a word. This research work considered each shape as a different class, resulting in a total of 126 classes (compared to 28 Arabic letters). The achieved average recognition rates were between 98.08% and 99.89% for the eight experimental fonts. The main contributions of this work are the novel hierarchical sliding window technique using only 16 features for each sliding window, considering each shape of Arabic characters as a separate class, bypassing the need for segmenting Arabic text, and its applicability to other languages

    A Novel Dataset for English-Arabic Scene Text Recognition (EASTR)-42K and Its Evaluation Using Invariant Feature Extraction on Detected Extremal Regions

    Full text link
    © 2019 IEEE. The recognition of text in natural scene images is a practical yet challenging task due to the large variations in backgrounds, textures, fonts, and illumination. English as a secondary language is extensively used in Gulf countries along with Arabic script. Therefore, this paper introduces English-Arabic scene text recognition 42K scene text image dataset. The dataset includes text images appeared in English and Arabic scripts while maintaining the prime focus on Arabic script. The dataset can be employed for the evaluation of text segmentation and recognition task. To provide an insight to other researchers, experiments have been carried out on the segmentation and classification of Arabic as well as English text and report error rates like 5.99% and 2.48%, respectively. This paper presents a novel technique by using adapted maximally stable extremal region (MSER) technique and extracts scale-invariant features from MSER detected region. To select discriminant and comprehensive features, the size of invariant features is restricted and considered those specific features which exist in the extremal region. The adapted MDLSTM network is presented to tackle the complexities of cursive scene text. The research on Arabic scene text is in its infancy, thus this paper presents benchmark work in the field of text analysis

    UTRNet: High-Resolution Urdu Text Recognition In Printed Documents

    Full text link
    In this paper, we propose a novel approach to address the challenges of printed Urdu text recognition using high-resolution, multi-scale semantic feature extraction. Our proposed UTRNet architecture, a hybrid CNN-RNN model, demonstrates state-of-the-art performance on benchmark datasets. To address the limitations of previous works, which struggle to generalize to the intricacies of the Urdu script and the lack of sufficient annotated real-world data, we have introduced the UTRSet-Real, a large-scale annotated real-world dataset comprising over 11,000 lines and UTRSet-Synth, a synthetic dataset with 20,000 lines closely resembling real-world and made corrections to the ground truth of the existing IIITH dataset, making it a more reliable resource for future research. We also provide UrduDoc, a benchmark dataset for Urdu text line detection in scanned documents. Additionally, we have developed an online tool for end-to-end Urdu OCR from printed documents by integrating UTRNet with a text detection model. Our work not only addresses the current limitations of Urdu OCR but also paves the way for future research in this area and facilitates the continued advancement of Urdu OCR technology. The project page with source code, datasets, annotations, trained models, and online tool is available at abdur75648.github.io/UTRNet.Comment: Accepted at The 17th International Conference on Document Analysis and Recognition (ICDAR 2023

    Field typing for improved recognition on heterogeneous handwritten forms

    Full text link
    Offline handwriting recognition has undergone continuous progress over the past decades. However, existing methods are typically benchmarked on free-form text datasets that are biased towards good-quality images and handwriting styles, and homogeneous content. In this paper, we show that state-of-the-art algorithms, employing long short-term memory (LSTM) layers, do not readily generalize to real-world structured documents, such as forms, due to their highly heterogeneous and out-of-vocabulary content, and to the inherent ambiguities of this content. To address this, we propose to leverage the content type within an LSTM-based architecture. Furthermore, we introduce a procedure to generate synthetic data to train this architecture without requiring expensive manual annotations. We demonstrate the effectiveness of our approach at transcribing text on a challenging, real-world dataset of European Accident Statements
    corecore