1,704 research outputs found

    SeizureNet: Multi-Spectral Deep Feature Learning for Seizure Type Classification

    Full text link
    Automatic classification of epileptic seizure types in electroencephalograms (EEGs) data can enable more precise diagnosis and efficient management of the disease. This task is challenging due to factors such as low signal-to-noise ratios, signal artefacts, high variance in seizure semiology among epileptic patients, and limited availability of clinical data. To overcome these challenges, in this paper, we present SeizureNet, a deep learning framework which learns multi-spectral feature embeddings using an ensemble architecture for cross-patient seizure type classification. We used the recently released TUH EEG Seizure Corpus (V1.4.0 and V1.5.2) to evaluate the performance of SeizureNet. Experiments show that SeizureNet can reach a weighted F1 score of up to 0.94 for seizure-wise cross validation and 0.59 for patient-wise cross validation for scalp EEG based multi-class seizure type classification. We also show that the high-level feature embeddings learnt by SeizureNet considerably improve the accuracy of smaller networks through knowledge distillation for applications with low-memory constraints

    An Automated System for Epilepsy Detection using EEG Brain Signals based on Deep Learning Approach

    Full text link
    Epilepsy is a neurological disorder and for its detection, encephalography (EEG) is a commonly used clinical approach. Manual inspection of EEG brain signals is a time-consuming and laborious process, which puts heavy burden on neurologists and affects their performance. Several automatic techniques have been proposed using traditional approaches to assist neurologists in detecting binary epilepsy scenarios e.g. seizure vs. non-seizure or normal vs. ictal. These methods do not perform well when classifying ternary case e.g. ictal vs. normal vs. inter-ictal; the maximum accuracy for this case by the state-of-the-art-methods is 97+-1%. To overcome this problem, we propose a system based on deep learning, which is an ensemble of pyramidal one-dimensional convolutional neural network (P-1D-CNN) models. In a CNN model, the bottleneck is the large number of learnable parameters. P-1D-CNN works on the concept of refinement approach and it results in 60% fewer parameters compared to traditional CNN models. Further to overcome the limitations of small amount of data, we proposed augmentation schemes for learning P-1D-CNN model. In almost all the cases concerning epilepsy detection, the proposed system gives an accuracy of 99.1+-0.9% on the University of Bonn dataset.Comment: 18 page

    A Novel Method for Epileptic Seizure Detection Using Coupled Hidden Markov Models

    Full text link
    We propose a novel Coupled Hidden Markov Model to detect epileptic seizures in multichannel electroencephalography (EEG) data. Our model defines a network of seizure propagation paths to capture both the temporal and spatial evolution of epileptic activity. To address the intractability introduced by the coupled interactions, we derive a variational inference procedure to efficiently infer the seizure evolution from spectral patterns in the EEG data. We validate our model on EEG aquired under clinical conditions in the Epilepsy Monitoring Unit of the Johns Hopkins Hospital. Using 5-fold cross validation, we demonstrate that our model outperforms three baseline approaches which rely on a classical detection framework. Our model also demonstrates the potential to localize seizure onset zones in focal epilepsy.Comment: To appear in MICCAI 2018 Proceeding

    AUTOMATIC DETECTION OF EPILEPSY EEG USING NEURAL NETWORKS

    Get PDF
    The electroencephalogram (EEG) signal plays an important role in the diagnosis of epilepsy. The EEG recordings of the ambulatory recording systems generate very lengthy data and the detection of the epileptic activity requires a timeconsuming analysis of the entire length of the EEG data by an expert. The traditional methods of analysis being tedious, many automated diagnostic systems for epilepsy has emerged in recent years.This paper proposes a neural-network-based automated epileptic EEG detection system that uses approximate entropy (ApEn) as the input feature. ApEn is a statistical parameter that measures the predictability of the current amplitude values of a physiological signal based on its previous amplitude values. It is known that the value of the ApEn drops sharply during an epileptic seizure and this fact is used in the proposed system.Two different types of neural networks, namely, Elman and probabilistic neural networks are considered. ApEn is used for the first time in the proposed system for the detection of epilepsy using neural networks. It is shown that the overall accuracy values as high as 100% can be achieved by using the proposed syste
    • …
    corecore