2,546 research outputs found

    Unconstrained Scene Text and Video Text Recognition for Arabic Script

    Full text link
    Building robust recognizers for Arabic has always been challenging. We demonstrate the effectiveness of an end-to-end trainable CNN-RNN hybrid architecture in recognizing Arabic text in videos and natural scenes. We outperform previous state-of-the-art on two publicly available video text datasets - ALIF and ACTIV. For the scene text recognition task, we introduce a new Arabic scene text dataset and establish baseline results. For scripts like Arabic, a major challenge in developing robust recognizers is the lack of large quantity of annotated data. We overcome this by synthesising millions of Arabic text images from a large vocabulary of Arabic words and phrases. Our implementation is built on top of the model introduced here [37] which is proven quite effective for English scene text recognition. The model follows a segmentation-free, sequence to sequence transcription approach. The network transcribes a sequence of convolutional features from the input image to a sequence of target labels. This does away with the need for segmenting input image into constituent characters/glyphs, which is often difficult for Arabic script. Further, the ability of RNNs to model contextual dependencies yields superior recognition results.Comment: 5 page

    Handwritten Arabic character recognition: which feature extraction method?

    Get PDF
    Recognition of Arabic handwriting characters is a difficult task due to similar appearance of some different characters. However, the selection of the method for feature extraction remains the most important step for achieving high recognition accuracy. The purpose of this paper is to compare the effectiveness of Discrete Cosine Transform and Discrete Wavelet transform to capture discriminative features of Arabic handwritten characters. A new database containing 5600 characters covering all shapes of Arabic handwriting characters has also developed for the purpose of the analysis. The coefficients of both techniques have been used for classification based on a Artificial Neural Network implementation. The results have been analysed and the finding have demonstrated that a Discrete Cosine Transform based feature extraction yields a superior recognition than its counterpart

    Text Line Segmentation of Historical Documents: a Survey

    Full text link
    There is a huge amount of historical documents in libraries and in various National Archives that have not been exploited electronically. Although automatic reading of complete pages remains, in most cases, a long-term objective, tasks such as word spotting, text/image alignment, authentication and extraction of specific fields are in use today. For all these tasks, a major step is document segmentation into text lines. Because of the low quality and the complexity of these documents (background noise, artifacts due to aging, interfering lines),automatic text line segmentation remains an open research field. The objective of this paper is to present a survey of existing methods, developed during the last decade, and dedicated to documents of historical interest.Comment: 25 pages, submitted version, To appear in International Journal on Document Analysis and Recognition, On line version available at http://www.springerlink.com/content/k2813176280456k3

    A Unified Multilingual Handwriting Recognition System using multigrams sub-lexical units

    Full text link
    We address the design of a unified multilingual system for handwriting recognition. Most of multi- lingual systems rests on specialized models that are trained on a single language and one of them is selected at test time. While some recognition systems are based on a unified optical model, dealing with a unified language model remains a major issue, as traditional language models are generally trained on corpora composed of large word lexicons per language. Here, we bring a solution by con- sidering language models based on sub-lexical units, called multigrams. Dealing with multigrams strongly reduces the lexicon size and thus decreases the language model complexity. This makes pos- sible the design of an end-to-end unified multilingual recognition system where both a single optical model and a single language model are trained on all the languages. We discuss the impact of the language unification on each model and show that our system reaches state-of-the-art methods perfor- mance with a strong reduction of the complexity.Comment: preprin

    Implicit Language Model in LSTM for OCR

    Full text link
    Neural networks have become the technique of choice for OCR, but many aspects of how and why they deliver superior performance are still unknown. One key difference between current neural network techniques using LSTMs and the previous state-of-the-art HMM systems is that HMM systems have a strong independence assumption. In comparison LSTMs have no explicit constraints on the amount of context that can be considered during decoding. In this paper we show that they learn an implicit LM and attempt to characterize the strength of the LM in terms of equivalent n-gram context. We show that this implicitly learned language model provides a 2.4\% CER improvement on our synthetic test set when compared against a test set of random characters (i.e. not naturally occurring sequences), and that the LSTM learns to use up to 5 characters of context (which is roughly 88 frames in our configuration). We believe that this is the first ever attempt at characterizing the strength of the implicit LM in LSTM based OCR systems
    • …
    corecore