130,829 research outputs found

    Learning Spatial-Semantic Context with Fully Convolutional Recurrent Network for Online Handwritten Chinese Text Recognition

    Get PDF
    Online handwritten Chinese text recognition (OHCTR) is a challenging problem as it involves a large-scale character set, ambiguous segmentation, and variable-length input sequences. In this paper, we exploit the outstanding capability of path signature to translate online pen-tip trajectories into informative signature feature maps using a sliding window-based method, successfully capturing the analytic and geometric properties of pen strokes with strong local invariance and robustness. A multi-spatial-context fully convolutional recurrent network (MCFCRN) is proposed to exploit the multiple spatial contexts from the signature feature maps and generate a prediction sequence while completely avoiding the difficult segmentation problem. Furthermore, an implicit language model is developed to make predictions based on semantic context within a predicting feature sequence, providing a new perspective for incorporating lexicon constraints and prior knowledge about a certain language in the recognition procedure. Experiments on two standard benchmarks, Dataset-CASIA and Dataset-ICDAR, yielded outstanding results, with correct rates of 97.10% and 97.15%, respectively, which are significantly better than the best result reported thus far in the literature.Comment: 14 pages, 9 figure

    Semantically Consistent Regularization for Zero-Shot Recognition

    Full text link
    The role of semantics in zero-shot learning is considered. The effectiveness of previous approaches is analyzed according to the form of supervision provided. While some learn semantics independently, others only supervise the semantic subspace explained by training classes. Thus, the former is able to constrain the whole space but lacks the ability to model semantic correlations. The latter addresses this issue but leaves part of the semantic space unsupervised. This complementarity is exploited in a new convolutional neural network (CNN) framework, which proposes the use of semantics as constraints for recognition.Although a CNN trained for classification has no transfer ability, this can be encouraged by learning an hidden semantic layer together with a semantic code for classification. Two forms of semantic constraints are then introduced. The first is a loss-based regularizer that introduces a generalization constraint on each semantic predictor. The second is a codeword regularizer that favors semantic-to-class mappings consistent with prior semantic knowledge while allowing these to be learned from data. Significant improvements over the state-of-the-art are achieved on several datasets.Comment: Accepted to CVPR 201

    Use of semantic and physical constraints in Bayesian Networks for Form Recognition

    Get PDF
    ISBN: 978-1-4577-1350-7International audienceIn our previous research, we worked on on-line form recognition by exploiting semantic constraints between fields using Bayesian networks. The semantic constraints allowed us to check the co-existence of fields filled up by hand by users. In this paper, we propose to test the use of architectural constraints for a design problem related to the modelling of shower areas. The proposed method exploits the physical dependencies between different parts of a space shower. The tests are performed on a database composed of 500 forms representing 5 models. The first results reach a recognition rate of 96.7%
    corecore