2,787 research outputs found

    Encoding of Tactile Stimuli by Mechanoreceptors and Interneurons of the Medicinal Leech

    Get PDF
    For many animals processing of tactile information is a crucial task in behavioral contexts like exploration, foraging, and stimulus avoidance. The leech, having infrequent access to food, developed an energy efficient reaction to tactile stimuli, avoiding unnecessary muscle movements: The local bend behavior moves only a small part of the body wall away from an object touching the skin, while the rest of the animal remains stationary. Amazingly, the precision of this localized behavioral response is similar to the spatial discrimination threshold of the human fingertip, although the leech skin is innervated by an order of magnitude fewer mechanoreceptors and each midbody ganglion contains only 400 individually identified neurons in total. Prior studies suggested that this behavior is controlled by a three-layered feed-forward network, consisting of four mechanoreceptors (P cells), approximately 20 interneurons and 10 individually characterized motor neurons, all of which encode tactile stimulus location by overlapping, symmetrical tuning curves. Additionally, encoding of mechanical force was attributed to three types of mechanoreceptors reacting to distinct intensity ranges: T cells for touch, P cells for pressure, and N cells for strong, noxious skin stimulation. In this study, we provide evidences that tactile stimulus encoding in the leech is more complex than previously thought. Combined electrophysiological, anatomical, and voltage sensitive dye approaches indicate that P and T cells both play a major role in tactile information processing resulting in local bending. Our results indicate that tactile encoding neither relies on distinct force intensity ranges of different cell types, nor location encoding is restricted to spike count tuning. Instead, we propose that P and T cells form a mixed type population, which simultaneously employs temporal response features and spike counts for multiplexed encoding of touch location and force intensity. This hypothesis is supported by our finding that previously identified local bend interneurons receive input from both P and T cells. Some of these interneurons seem to integrate mechanoreceptor inputs, while others appear to use temporal response cues, presumably acting as coincidence detectors. Further voltage sensitive dye studies can test these hypotheses how a tiny nervous system performs highly precise stimulus processing

    Cortical Spike Synchrony as a Measure of Input Familiarity

    Get PDF
    J.G.O. was supported by the Ministerio de Economia y Competividad and FEDER (Spain, project FIS2015-66503-C3-1-P) and the ICREA Academia programme. E.U. acknowledges support from the Scottish Universities Life Sciences Alliance (SULSA) and HPC-Europa2.Peer reviewedPostprin

    Transcriptional control of behaviour: engrailed knockout changes cockroach escape trajectories

    Get PDF
    The cerci of the cockroach are covered with identified sensory hairs that detect air movements. The sensory neurons that innervate these hairs synapse with giant interneurons in the terminal ganglion that in turn synapse with interneurons and leg motor neurons in thoracic ganglia. This neural circuit mediates the animal's escape behavior. The transcription factor Engrailed (En) is expressed only in the medially born sensory neurons, which suggested that it could work as a positional determinant of sensory neuron identity. Previously, we used double-stranded RNA interference to abolish En expression and found that the axonal arborization and synaptic outputs of an identified En-positive sensory neuron changed so that it came to resemble a nearby En-negative cell, which was itself unaffected. We thus demonstrated directly that En controls synaptic choice, as well as axon projections. Is escape behavior affected as a result of this miswiring? We showed recently that adult cockroaches keep each escape unpredictable by running along one of a set of preferred escape trajectories (ETs) at fixed angles from the direction of the threatening stimulus. The probability of selecting a particular ET is influenced by wind direction. In this present study, we show that early instar juvenile cockroaches also use those same ETs. En knock-out significantly perturbs the animals' perception of posterior wind, altering the choice of ETs to one more appropriate for anterior wind. This is the first time that it has been shown that knock-out of a transcription factor controlling synaptic connectivity can alter the perception of a directional stimulus

    Neural field model of binocular rivalry waves

    Get PDF
    We present a neural field model of binocular rivalry waves in visual cortex. For each eye we consider a one–dimensional network of neurons that respond maximally to a particular feature of the corresponding image such as the orientation of a grating stimulus. Recurrent connections within each one-dimensional network are assumed to be excitatory, whereas connections between the two networks are inhibitory (cross-inhibition). Slow adaptation is incorporated into the model by taking the network connections to exhibit synaptic depression. We derive an analytical expression for the speed of a binocular rivalry wave as a function of various neurophysiological parameters, and show how properties of the wave are consistent with the wave–like propagation of perceptual dominance observed in recent psychophysical experiments. In addition to providing an analytical framework for studying binocular rivalry waves, we show how neural field methods provide insights into the mechanisms underlying the generation of the waves. In particular, we highlight the important role of slow adaptation in providing a “symmetry breaking mechanism” that allows waves to propagate

    Perception-related modulations of local field potential power and coherence in primary visual cortex of awake monkey during binocular rivalry

    Get PDF
    Cortical synchronization at γ-frequencies (35–90 Hz) has been proposed to define the connectedness among the local parts of a perceived visual object. This hypothesis is still under debate. We tested it under conditions of binocular rivalry (BR), where a monkey perceived alternations among conflicting gratings presented singly to each eye at orthogonal orientations. We made multi-channel microelectrode recordings of multi-unit activity (MUA) and local field potentials (LFP) from striate cortex (V1) during BR while the monkey indicated his perception by pushing a lever. We analyzed spectral power and coherence of MUA and LFP over 4–90 Hz. As in previous work, coherence of γ-signals in most pairs of recording locations strongly depended on grating orientation when stimuli were presented congruently in both eyes. With incongruent (rivalrous) stimulation LFP power was often consistently modulated in consonance with the perceptual state. This was not visible in MUA. These perception-related modulations of LFP occurred at low and medium frequencies (<30 Hz), but not at γ-frequencies. Perception-related modulations of LFP coherence were also restricted to the low–medium range. In conclusion, our results do not support the expectation that γ-synchronization in V1 is related to the perceptual state during BR, but instead suggest a perception-related role of synchrony at low and medium frequencies
    corecore