6 research outputs found

    Investigation of QoS Performance Evaluation over 5G Network for Indoor Environment at millimeter wave Bands

    Get PDF
    One of the key advancement in next-generation 5G wireless networks is the use of high-frequency signals specifically those are in the millimeter wave (mm-wave) bands. Using mmwave frequency will allow more bandwidth resulting higher data rates as compared to the currently available network. However, several challenges are emerging (such as fading, scattering, propagation loss etc.), when we propagate the radio signal at high frequencies. Optimizing propagation parameters of the mm-wave channels system are much essential for implementing in the realworld scenario. To keep this in mind, this paper presents the potential abilities of high frequencies signals by characterizing the indoor small cell propagation channel for 28 GHz, 38 GHz, 60 GHz and 73 GHz frequency band, which is considered as the ultimate frequency choice for many of the researchers. The most potential Close-In (CI) propagation model for mm-wave frequencies is used as a Large-scale path loss model. The results have been collected concerning the capacity of users to evaluate the average user throughput, cell-edge user throughput, average cell throughput, spectral efficiency and fairness index. The statistical results proved that these mm-wave spectrum gives a sufficiently greater overall performance and are available for use in the next generation 5G mobile communication network

    MASSIVE MIMO FOR HIGH-SPEED TRAIN COMMUNICATION SYSTEMS

    Get PDF
    With the current development in wireless communications in high-mobility systems such as high-speed train (HST), the HST scenario is accepted as among the different scenarios for the fifth-generation (5G). Massive Multiple-Input-Multiple-Output (MIMO) systems, which are equipped with tens or hundreds of antennas has become an improved MIMO system which can assist in achieving the ever-growing demand of data for 5G wireless communication systems. In this study, the associated 5G technologies, as well as the equivalent channel modeling in HST settings and the challenges of deploying massive MIMO on HST, was investigated The channel model was modeled using the WINNER II channel model. With regrads, the proposed non-stationary IMT-A massive MIMO channel models, the essential statistical properties such as the spatial cross-correlation function (CCF), local temporal autocorrelation function (ACF) of the massive MIMO channel model using different propagation scenarios such as open space, viaduct and cutting was analyzed and investigated. The results from the simulations were compared with the analytical results in other to show that the statistical properties vary with time as a result of the non-stationarity of the proposed channel model. The agreement between the stationary interval of the non-stationary IMT-A channel model and the HST under different propagation scenarios shows the efficiency of the proposed channel model. Based on findings; the impact of the deployment of a large antenna on the channel capacity should be thoroughly investigated under different HST propagation scenario. Also, more HST train propagation scenarios such as the tunnel, hilly terrain, and the station should be considered in the non-stationary IMT-A massive MIMO channel models

    Massive MIMO Channel Characterization and Modeling: The Present and the Future

    Get PDF
    One of the technologies aimed to provide large increase in data rate, enhanced spectral efficiency, transmit power efficiency, high sum rates, and increase link reliability for the fifth generation network (5G) is the massive multiple input multiple output (MIMO) antenna system. The projected benefits of massive MIMO depend on the propagation environment. However, due to the non wide-sense stationarity properties of massive MIMO, small scale characterization (SSC) is not enough for modeling its propagation channel as the spatial domain is also required. Giving consideration to the dynamic adaptation of the elevation angles which is not captured in 2D channel models will open up new possibilities for 3D beamforming which will introduce considerable performance gains for 5G network capacity enhancement. In this paper therefore, we review the various non wide-sense stationary channel parameters for characterizing massive MIMO channel particularly in the 3D plane and their methods of measurement, All through the discussion, we identified outstanding research challenges in these areas and their future directions
    corecore