67,395 research outputs found

    Energy-efficient Transitional Near-* Computing

    Get PDF
    Studies have shown that communication networks, devices accessing the Internet, and data centers account for 4.6% of the worldwide electricity consumption. Although data centers, core network equipment, and mobile devices are getting more energy-efficient, the amount of data that is being processed, transferred, and stored is vastly increasing. Recent computer paradigms, such as fog and edge computing, try to improve this situation by processing data near the user, the network, the devices, and the data itself. In this thesis, these trends are summarized under the new term near-* or near-everything computing. Furthermore, a novel paradigm designed to increase the energy efficiency of near-* computing is proposed: transitional computing. It transfers multi-mechanism transitions, a recently developed paradigm for a highly adaptable future Internet, from the field of communication systems to computing systems. Moreover, three types of novel transitions are introduced to achieve gains in energy efficiency in near-* environments, spanning from private Infrastructure-as-a-Service (IaaS) clouds, Software-defined Wireless Networks (SDWNs) at the edge of the network, Disruption-Tolerant Information-Centric Networks (DTN-ICNs) involving mobile devices, sensors, edge devices as well as programmable components on a mobile System-on-a-Chip (SoC). Finally, the novel idea of transitional near-* computing for emergency response applications is presented to assist rescuers and affected persons during an emergency event or a disaster, although connections to cloud services and social networks might be disturbed by network outages, and network bandwidth and battery power of mobile devices might be limited

    Trends in office internal gains and the impact on space heating and cooling demands

    Get PDF
    Internal gains from occupants, equipment and lighting contribute a significant proportion of the heat gains in an office space. Looking at trends in Generation-Y, it appears there are two diverging paths for future ICT demand: one where energy demand is carefully regulated and the other where productivity enhancers such as multiple monitors and media walls causes an explosion of energy demand within the space. These internal gains scenarios were simulated on a variety of different building archetypes to test their influence on the space heating and cooling demand. It was demonstrated that in offices with a high quality facade, internal gains are the dominant factor. As a case study, it was shown that natural ventilation is only possible when the ICT demand is carefully regulated
    • 

    corecore