15 research outputs found

    ZnO Nanorods Coated Microfiber Loop Resonator For Relative Humidity Sensing

    Get PDF
    This paper reported a new humidity sensor, employing microfiber loop resonator (MLR) coated with Zinc Oxide (ZnO) as a probe. The MLR was constructed from a silica tapered fiber with a waist diameter of 7 µm, which was prepared using flame brushing technique. The self-touching loop was coated by ZnO using sol–gel method. A significant response to humidity changes from 35%RH to 85%RH was observed due to the changeable refractive index of the ZnO coating material which modified the light propagation at the output of the MLR. The result shows that the sensitivity of the proposed sensor increases by a factor of 2 as compared to the uncoated MLR. The output power of the ZnO coated MLR drops linearly from −29.3 dBm to −43 dBm when relative humidity increases from 35%RH to 85%RH. The linearity and resolution of the ZnO coated MLR also outperformed the uncoated MLR with 99.4% and 0.013%RH respectively

    Real-Time Humidity Measurement during Sports Activity using Optical Fibre Sensing

    Get PDF
    An optical fibre sensor for monitoring relative humidity (RH) changes during exercise is demonstrated. The humidity sensor comprises a tip coating of poly (allylamine hydrochloride) (PAH)/silica nanoparticles (SiO2 NPs) deposited using the layer-by-layer technique. An uncoated fibre is employed to compensate for bending losses that are likely to occur during movement. A linear fit to the response of the sensing system to RH demonstrates a sensitivity of 3.02 mV/% (R2 = 0.96), hysteresis ± 1.17% RH when 11 bilayers of PAH/SiO2 NPs are coated on the tip of the fibre. The performance of two different textiles (100% cotton and 100% polyester) were tested in real-time relative humidity measurement for 10 healthy volunteers. The results demonstrate the moisture wicking properties of polyester in that the relative humidity dropped more rapidly after cessation of exercise compared to cotton. The approach has the potential to be used to monitor sports performance and by clothing developers for characterising different garment designs

    Simultaneous Measurement of Temperature and Relative Humidity Using a Dual-Wavelength Erbium-Doped Fiber Ring Laser Sensor

    Get PDF
    A fiber ring laser sensor setup utilizing FBGs (Fiber Bragg Gratings) for simultaneous measurement of ambient temperature and relative humidity (RH) is presented. Two FBGs are incorporated as tunable filters for a dual-wavelength laser emission, where one FBG was coated with Polyimide (PI) in order to achieve sensitivity to RH changes, while the other bare FBG was used for temperature sensing. An increase in RH would induce a strain on the grating, which results in a variation in the resonance wavelength of the PI-coated FBG. This causes a shift in the laser emission wavelength. Being insensitive to RH changes, the bare FBG was employed to measure temperature. The dual-wavelength fiber ring laser sensor created thus allows to determine simultaneous measurement of RH and temperature. The RH sensitivities observed by the PI coated FBG to RH and temperature are 3.6 pm/%RH and 12.15 pm/°C respectively. The temperature sensitivity of the bare FBG was observed to be 9.6 pm/°C. The main advantage of the proposed setup is an optical signal to noise ratio (OSNR) higher than 55 dB and a 3 dB-bandwidth less than 0.02 nm, which points out efficient capabilities for both precise sensing and remote detection applications

    Localised plasmonic hybridisation mode optical fibre sensing of relative humidity

    Get PDF
    This work reports an optical fibre probe functionalised with ‘cotton-shaped’ gold-silica nanostructures for relative humidity (RH) monitoring. The sensor response utilises the localised surface plasmon resonance (LSPR) of self-assembled nanostructures: gold nanospheres (40 nm) surrounded by one layer of poly (allylamine hydrochloride) and hydrophilic silica nanoparticles (10–20 nm) on the end-facet of an optical fibre via a wavelength shift of the reflected light. Sensor optimisation is investigated by varying the density of gold nanoparticles on the end-facet of an optical fibre. It is demonstrated that the plasmonic hybridisation mode appearing when the average gold interparticle distance is small (Median: 7.5 nm) is more sensitive to RH after functionalisation than the singular plasmonic mode. The plasmonic hybridisation mode sensor demonstrates a high linear regression to RH with a sensitivity of 0.63 nm/%RH and excellent reversibility. The response time (T10–90%) and recovery time (T90–10%) are calculated as 1.2 ± 0.4 s and 0.95 ± 0.18 s. The sensor shows no measurable cross-talk to temperature in the tested range between 25 °C to 40 °C and the 95% limit of agreement is 3.1%RH when compared to a commercial reference sensor. Simulation with finite element analysis reveals a polarisation-dependent plasmonic hybridisation with a redshift of plasmonic wavelength as a decrease of the interparticle distance and a higher refractive index sensitivity, which results in a high sensitivity to RH as observed in the experiment

    Piezoresistive Breathing Sensing System with 3D Printed Wearable Casing

    Get PDF
    Respiratory rate is an important parameter for many health, home care, work, or sport applications. In this paper, a new wearable sensing system based on a piezoresistive FlexiForce sensor has been developed. The sensor can be attached to any common chest strap. A compact 3D casing has been designed and printed with a 3D printer. This casing integrates the sensor and all auxiliary elements of the system: microcontroller, battery, Bluetooth module, connections, battery charger, and acquisition circuit. To the best of our knowledge, this is the first study presenting a FlexiForce respiration sensor that includes all system elements in a single compact casing. The source files with the design of the casing have been published as supplementary material to be reused by any interested researcher. The sensing system was tested with twenty-one subjects for different breathing rates. Two different algorithms were developed to obtain the respiratory rate from the voltage signals recorded by the sensor. Statistical tests were performed to determine the optimal computation time window and algorithm. This approach is also novel in this field. Low error values were obtained for a time window of 27¿s with an algorithm based on the calculation of time between zero-crossings (4.02%) and with an algorithm based on counting them (3.40%). To promote research transparency and reusability, the dataset with the recorded data and the source code of the algorithms and statistical tests have also been published. Therefore, an open, replicable, low-error, wearable, wireless, and compact sensing system to measure respiratory rate was developed and tested

    Optical fibre Sensor for Simultaneous Temperature and Relative Humidity Measurement: Towards Absolute Humidity Evaluation

    Get PDF
    Temperature and humidity are essential parameters in monitoring the health of patients in critical care. An optical fibre sensor has been developed for simultaneous measurement of relative humidity (RH) and temperature at a single optical fibre tip based on the reflected intensity. Combining these measurements enables absolute humidity values to be obtained. The fibre tip is first modified with a coating of poly(allylamine hydrochloride) (PAH) / silica nanoparticles (SiO2 NPs) for relative humidity (RH) measurement and then coated with thermochromic liquid crystal (TLC) for temperature measurement. Experimental results demonstrate that the RH and temperature sensitivity are respectively 0.43%/RH% (intensity at a wavelength of 650nm) from 55 - 90% RH (R2=0.973) and 3.97 nm/°C from 28 – 46 °C (R2>0.99). Moreover, the proposed sensor has low crosstalk between each of the sensing parameters, with a response time of 3.1s temperature (30 – 38 °C) and 13.2s for relative humidity (20 – 80 %). In comparison to grating based optical fibre sensors the proposed sensor is low-cost with a simple manufacturing process which has the potential to find widespread use in healthcare applications

    FBG Sensors for Environmental and Biochemical Applications - A Review

    Get PDF

    (INVITED)Chemical sensors based on long period fiber gratings: A review

    Get PDF
    Fiber optic devices are being increasingly employed in the fields of chemical and environmental sensing due to their important features, such as high accuracy, small size, chemical inertness, remote operation and multiplexing capabilities. In this work, a thorough review about the design, fabrication and characterization of fiber optic chemical sensors based on long period grating (LPG) technology is reported. The emphasis is placed on transducer designs and features as well as the techniques to enhance the sensitivity. Subsequently, coating materials to be deposited around the grating region, providing a selective response to the target analytes are described in detail. Finally, the different applications are reviewed, mainly related to the monitoring of environmental parameters, volatile organic compounds, hazardous gases, heavy metal ions, corrosion, marine salinity and food quality. The aim of this work is to deliver a comprehensive analysis regarding the state-of-the-art solutions about LPG-based chemical sensors and to summarize the current shortcomings and upcoming research paths
    corecore