796 research outputs found

    CEM2k and LAQGSM as Event Generators for Space-Radiation-Shielding and Cosmic-Ray-Propagation Applications

    Full text link
    The CEM2k and LAQGSM codes have been recently developed at Los Alamos National Laboratory to simulate nuclear reactions for a number of applications. We have benchmarked our codes against most available measured data at incident particle energies from 10 MeV to 800 GeV and have compared our results with predictions of other current models used by the nuclear community. Here, we present a brief description of our codes and show illustrative results to show that CEM2k and LAQGSM can be used as reliable event generators for space-radiation-shielding, cosmic-ray-propagation, and other astrophysical applications. Finally, we show the use of our calculated cross sections together with experimental data from our LANL T-16 compilation to produce evaluated files which we use in the GALPROP model of galactic particle propagation to better constrain the size of the CR halo.Comment: 10 pages, 9 figures, LaTeX, talk given at the World Space Congress 2002, 34th COSPAR Scientific Assembly, Houston, Texas, USA, 10-19 October 2002, to appear in Advances in Space Researc

    CEM03 and LAQGSM03 - new modeling tools for nuclear applications

    Full text link
    An improved version of the Cascade-Exciton Model (CEM) of nuclear reactions realized in the code CEM2k and the Los Alamos version of the Quark-Gluon String Model (LAQGSM) have been developed recently at LANL to describe reactions induced by particles and nuclei for a number of applications. Our CEM2k and LAQGSM merged with the GEM2 evaporation/fission code by Furihata have predictive powers comparable to other modern codes and describe many reactions better than other codes; therefore both our codes can be used as reliable event generators in transport codes for applications. During the last year, we have made a significant improvements to the intranuclear cascade parts of CEM2k and LAQGSM, and have extended LAQGSM to describe photonuclear reactions at energies to 10 GeV and higher. We have produced in this way improved versions of our codes, CEM03.01 and LAQGSM03.01. We present a brief description of our codes and show illustrative results obtained with CEM03.01 and LAQGSM03.01 for different reactions compared with predictions by other models, as well as examples of using our codes as modeling tools for nuclear applications.Comment: 12 pages, 10 figures, to be published in Journal of Physics: Conference Series: Proc. Europhysics Conf. on New Trends in Nuclear Physics Applications and Technologies (NPDC19), Pavia, Italy, September 5-9, 200
    • …
    corecore