1,529 research outputs found

    Multi-user indoor optical wireless communication system channel control using a genetic algorithm

    Get PDF
    A genetic algorithm controlled multispot transmitter is demonstrated that is capable of optimising the received power distribution for randomly aligned single element receivers in multiple fully diffuse optical wireless communications systems with multiple mobile users. Using a genetic algorithm to control the intensity of individual diffusion spots, system deployment environment changes, user movement and user alignment can be compensating for, with negligible impact on the bandwidth and root mean square delay spread. It is shown that the dynamic range, referenced against the peak received power, can be reduced up to 27% for empty environments and up to 26% when the users are moving. Furthermore, the effect of user movement, that can perturb the channel up to 8%, can be reduced to within 5% of the optimised case. Compared to alternative bespoke designs that are capable of mitigating optical wireless channel drawbacks, this method provides the possibility of cost-effectiveness for mass-produced receivers in applications where end-user friendliness and mobility are paramount

    High-Speed Indoor Visible Light Communication System Employing Laser Diodes and Angle Diversity Receivers

    Get PDF
    The two main challenges facing high data rate visible light communication (VLC) are the low modulation bandwidth of the current transmitters (i.e. light emitting diodes, LEDs) and the inter symbol interference (ISI) caused by multipath propagation. In this paper, we evaluate laser diodes (LDs) as a source of illumination and communication instead of LEDs for a VLC system in conjunction with an angle diversity receiver (ADR). The main advantage of using LDs is their high modulation bandwidth that enables communication at data rates of multi gigabits per second for VLC when using a suitable receiver, such as an ADR, which mitigates the ISI. Our proposed system uses simple on-off keying (OOK) modulation, and it is able to provide data rates of 5 Gbps and a bit-error-rate (BER) of 10-6 in the worst case scenario

    Performance Evaluation of Multi-gigabit Indoor Visible Light Communication System

    Get PDF
    This paper presents a performance evaluation of a mobile multi-gigabit visible light communication (VLC) system in two different environments. The VLC channel characteristics and links were evaluated under the diverse situations of an empty room and a room with very strong shadowing effects resulting from mini cubicle offices. RGB laser diodes (LDs) were used to mitigate the low modulation bandwidth of conventional transmitters (light emitting diodes, LEDs) in the VLC system. In addition, an angle diversity receiver (ADR) was introduced to mitigate intersymbol- interference (ISI). Furthermore, a delay adaptation technique was used to further reduce the effect of ISI and multipath dispersion. The combination of delay adaptation and ADR (DAT ADR system) added a degree of freedom to the link design, which resulted in a VLC system that has the ability to provide high data rates (i.e. 5 Gbps) in the considered harsh indoor environment. Our proposed system used a simple on-off keying (OOK) modulation format and it was able to provide data rates of 5 Gbps and a bit-error-rate (BER) of 10-3 in the worst case scenario in the considered realistic indoor environment

    Hybrid diffuse IR transmitter supporting VLC systems with imaging receivers

    Get PDF
    Indoor visible light communication (VLC), using white-LED lighting, generally assumes lights are ON during communications. In this paper, we propose a new Hybrid diffuse Infrared transmitter (HDIrT) coupled with an imaging receiver to support VLC system when the light is dimmed or is totally turned off. Infrared (IR) optical communications boasts similar advantages as VLC systems. It can also provide high transmission rates. The ultimate goal of our proposed system is to increase the signal to noise ratio (SNR), mitigate the channel delay spread and the effect of inter-symbol-interference (ISI) when the system operates at a high data transmission rate. The delay spread is reduced from 1.55 ns to about 0.1 ns when a narrow field-of-view (FOV) imaging receiver replaces a wide FOV non-imaging receiver. At a higher data rate of 2.5 Gb/s, the simulation results show that the imaging HDIrT system achieves about 17 dB SNR in the presence of multipath dispersion, receiver noise and mobility

    Genetic algorithm optimisation methods applied to the indoor optical wireless communications channel

    Get PDF
    This thesis details an investigation into the application of genetic algorithms to indoor optical wireless communication systems. The principle aims are to show how it is possible for a genetic algorithm to control the received power distribution within multiple dynamic environments, such that a single receiver design can be employed lowering system costs. This kind of approach is not typical within the research currently being undertaken, where normally, the emphasis on system performance has always been linked with improvements to the receiver design. Within this thesis, a custom built simulator has been developed with the ability to determine the channel characteristics at all locations with the system deployment environment, for multiple configurations including user movement and user alignment variability. Based on these results an investigation began into the structure of the genetic algorithm, testing 192 different ones in total. After evaluation of each one of the algorithms and their performance merits, 2 genetic algorithms remained and are proposed for use. These 2 algorithms were shown capable of reducing the receiver power deviation by up to 26%, and forming, whilst the user perturbs the channel, through movement and variable alignment, a consistent power distribution to within 12% of the optimised case. The final part of the work, extends the use of the genetic algorithm to not only try to optimise the received power deviation, but also the received signal to noise ratio deviation. It was shown that the genetic algorithm is capable of reducing the deviation by around 12% in an empty environment and maintain this optimised case to within 10% when the user perturbs the channel

    Design and Analysis of Free Space Optical Sensor Networks for Short-Range Applications

    Get PDF
    Free space optical communication (FSOC) systems using direct detection and line of sight (LOS) laser links can provide spatially efficient and physically secure connectivity for wireless sensor networks. The FSOC system can be developed with low power microcontrollers so that the entire sensor system can be implemented on a single printed circuit board. Available data rates can range from kb/s to hundreds of Mb/s with the complete system consuming power only in the tens of mW. These features are advantageous for low-power communication networks over short distances in environments where LOS is available, and where radio frequency (RF) connectivity must be avoided because of interference or security issues. In particular, the faster data acquisition rates of FSOC systems are extremely attractive in applications where the sensor systems, or "motes", remain in sleep mode most of the time and need to transmit large amounts of data in extremely short bursts when they wake up. However, in order for directional FSO sensor networks to become viable short-range solutions, the networks must provide signal coverage over a wide field of view without strict optical alignment requirements, operate with efficient media access protocols that can handle network traffic in an efficient manner, and minimize random access times for the independent transmitting motes within the network. These challenges are the focus of this dissertation. In general, narrow optical beams used for FSOC require precise and complex pointing, acquisition, tracking and alignment methods. This dissertation addresses the challenge of alignment for FSO-based nodes by designing optical transceiver architectures with multiple narrow field of view (FOV) transmitters and a single, wide angle receiver. The architecture consists of rings of multiple transmitters surrounding a photodiode for light collection. Each ring is tilted at a different angle so that a wide transmission FOV can be obtained, thereby allowing point-multipoint communication. Depending on the number of transmitters and the transmitter's divergence angle, different FOVs can be tailored to fit the requirements of the target application. The developed transmitter design requires only a few milliwatts of transmission power from each transmitter to cover its respective FOV, which is sustainable with drive currents up to 10 milliamps using vertical cavity surface emitting lasers (VCSELs), making it a more practical strategy for a compact battery driven device. The other major challenge is designing the proper media access control (MAC) protocol, which provides nodes with addresses and channel access capability so that directional links between multiple nodes can be formed. The challenge lies in the fact that most nodes are blind to other nodes' transmissions because of their relatively narrow directional links. Because of this blindness, packet collisions are inevitable. Therefore, an efficient multiple access protocol needs to be designed for the FSOC system to ensure successful directional communication between the motes and cluster heads for data collection and relaying. While there are many protocols that allow multiple access and provide collision avoidance for traditional RF systems, these protocols are not optimized for FSOC systems consisting of multiple narrow FOV transmitters. Instead, a directional MAC (DMAC) protocol is developed from existing RF protocols, but modified for FSOC technology. It overcomes the limitations in FSOC communication resulting from directionality by setting up a master-slave network architecture where communication takes place between a sensing system, "mote", and a central control station, or "cluster head", which is designed with a multiple VCSEL transmitters. In this way, the physical transmitter sources of the cluster head become an integral part of the FSOC DMAC protocol. In this type of architecture, the master node, or cluster head, has the dual functionality of coordinating network traffic and aggregating data from all the slave nodes, or motes, that are within its field of view (FOV). Multiple cluster heads can form a directional network backbone, and can relay signals collected from a mote through other cluster heads, until the signal is delivered to its destination. In summary, this dissertation provides: 1) the design and implementation of small and inexpensive short-range FSOC systems that can be implemented using standard "off the shelf" components including a microcontroller and sensor device to form a complete standalone package; 2) development of a DMAC protocol that is optimized for the implemented FSOC system and target network applications; 3) network performance evaluation and optimization for the combined FSOC hardware, network architecture, and DMAC protocol. This is done through a series of hardware tests on an experimental prototype FSOC sensor network consisting of 10 motes and 1 cluster head and simulations of larger network sizes

    High Bit Rate Wireless and Fiber-Based Terahertz Communication

    Get PDF
    RÉSUMÉ Dans le spectre électromagnétique, la bande des térahertz s’étend de 100 GHz à 10 THz (longueurs d’onde de 3 mm à 30 μm). Des décennies auparavant, le spectre des THz était connu sous le nom de « gap térahertz » en raison de l’indisponibilité de sources et détecteurs efficaces à ces fréquences. Depuis quelques années, la science a évolué pour faire migrer la technologie THz des laboratoires aux produits commerciaux. Il existe plusieurs applications des ondes THz en imagerie, spectroscopie et communications. Dans cette thèse, nous nous intéressons aux communications THz à travers deux objectifs. Le premier objectif est de développer une source THz de haute performance dédiée aux communications et basée sur les technologies optiques avec des produits commerciaux uniquement. Le second objectif est de démontrer l’utilisation de fibres optiques afin de renforcer la robustesse des communications THz sans fil. Nous débutons cette thèse avec une revue de la littérature scientifique sur le sujet de la communications THz sans fil et filaire. D’abord, nous discutons des deux méthodes communément utilisées (électronique et optique) pour démontrer des liens de communications THz avec leurs avantages et inconvénients. Nous présentons par la suite la possibilité d’utiliser un système de spectroscopie THz pour des applications en communications avec des modifications mineures au montage. Nous présentons ensuite plusieurs applications gourmandes en bande passante qui pourraient bénéficier du spectre THz, incluant la diffusion en continu (streaming) de flux vidéo aux résolutions HD et 4K non compressés. Ensuite, nous discutons de la motivation d’utiliser de longues fibres THz et notamment du fait qu’elles ne sont pas destinées à remplacer les fibres optiques conventionnelles de l’infrarouge, mais plutôt à augmenter la robustesse des liens THz sans fil. En particulier, les fibres THz peuvent être utilisées pour garantir le lien de communication dans des environnements géométriques complexes ou difficile à atteindre, ainsi que pour immuniser le lien THz aux attaques de sécurité. Plusieurs designs de fibres et guides d’onde précédemment démontrées dans la littérature sont discutés avec, entre autres, leurs méthodes de fabrication respectives. Nous discutons ensuite de la possibilité d’utiliser un simple guide d’onde diélectrique et sous-longueur d’onde pour transmettre l’information à un débit de l’ordre de plusieurs Gbps sur une distance de quelques mètres.----------ABSTRACT The Terahertz (THz) spectral range spans from 100 GHz to 10 THz (wavelength: 3 mm to 30 μm) in the electromagnetic spectrum. Decades ago, the THz spectral range is often named as ‘THz gap’ due to the non-availability of efficient THz sources and detectors. In the recent years, the science has evolved in bringing the THz technology from lab scale to commercial products. There are several potential applications of THz frequency band such as imaging, spectroscopy and communication. In this thesis, we focus on THz communications by addressing two objectives. The first objective is to develop a high-performance photonics-based THz communication system using all commercially available components. The second objective is to demonstrate the THz-fiber based communications, which can be used to increase the reliability of THz wireless links. We begin this thesis with a scientific literature review on the subject of THz wireless and fiber-based communications. First, the two different methodologies (all electronics based and photonics-based THz system) that is commonly used in the demonstration of THz communications is discussed along with their advantages and challenges. We then present the flexibility of photonics-based THz system where it is possible to switch it with minor modifications for THz spectroscopic studies and THz communication applications. Several bandwidth hungry applications that demands the use of THz spectrum for next generation communications is detailed. This includes the streaming of uncompressed HD/4K and beyond high-resolution videos, where the THz spectrum can be beneficial. Next, the motivation of using long THz fibers is discussed and we convince the readers that the THz fibers are not meant to replace the fibers in the optical-infrared region but to increase the reliability of THz wireless links. Particularly, the THz fibers can be used to provide connectivity in complex geometrical environments, secure communications and signal delivery to hard-to-reach areas. Several novel fiber/waveguide designs along with their fabrication technologies from the literature are presented. We then show that a simple solid core dielectric subwavelength fiber can be used to transmit the information in the order of several Gbps to a distance of a few meters
    corecore