4 research outputs found

    Target detection through quantum illumination

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2012."February 2012." Cataloged from PDF version of thesis.Includes bibliographical references (p. 69-70).Classical target detection can suffer large error probabilities in noisy and lossy environments when noise photons are mistaken for signal photons reflected from an object. It has been shown theoretically that the correlation between entangled photons can be used to better discriminate between the signal photons reflected by an object and noise photons, thus reducing the probability of error [13, 15, 17, 7, 6]. This thesis presents the first experimental implementation of target detection enhanced by quantum illumination (QI). Nondegenerate, time entangled signal and idler beams are created through Type-O spontaneous parametric downconversion (SPDC). The signal is attenuated and combined with large levels of noise. The signal is phase modulated to improve the observation by shifting it from DC to 16 kHz. The return signal and idler are recombined in an optical parametric amplifier (OPA) which captures the phase correlation between the two beams. It is found that only 10% of the total signal and idler photons interact at the OPA due to the multi-mode nature of the SPDC emission which does not match the pump spatial mode and thus experience lower gains at the OPA. Considering only the power interacting at the OPA, the signal-to-noise ratio (SNR) of QI agrees with the theoretical model.by Sara L. Mouradian.M.Eng

    Topics in Quantum Metrology, Control, and Communications

    Get PDF
    Noise present in an environment has significant impacts on a quantum system affecting properties like coherence, entanglement and other metrological features of a quantum state. In this dissertation, we address the effects of different types of noise that are present in a communication channel (or medium) and an interferometric setup, and analyze their effects in the contexts of preserving coherence and entanglement, phase sensitivity, and limits on rate of communication through noisy channels. We first consider quantum optical phase estimation in quantum metrology when phase fluctuations are introduced in the system by its interaction with a noisy environment. By considering path-entangled dual-mode photon Fock states in a Mach-Zehnder optical interferometric configuration, we show that such phase fluctuations affect phase sensitivity and visibility by adding noise to the phase to be estimated. We also demonstrate that the optimal detection strategy for estimating a phase in the presence of such phase noise is provided by the parity detection scheme. We then investigate the random birefringent noise present in an optical fiber affecting the coherence properties of a single photon polarization qubit propagating through it. We show that a simple but effective control technique, called dynamical decoupling, can be used to suppress the effects of the dephasing noise, thereby preserving its ability to carry the encoded quantum information in a long-distance optical fiber communication system. Optical amplifiers and attenuators can also add noise to an entangled quantum system, deteriorating the non-classical properties of the state. We show this by considering a two-mode squeezed vacuum state, which is a Gaussian entangled state, propagating through a noisy medium, and characterizing the loss of entanglement in the covariance matrix and the symplectic formalism for this state. Finally, we discuss limits on the rate of communication in the context of sending messages through noisy optical quantum communication channels. In particular, we prove that a strong converse theorem holds under a maximum photon number constraint for these channels, guaranteeing that the success probability in decoding the message vanishes in the asymptotic limit for the rate exceeding the capacity of the channels

    Quantum state discrimination with bosonic channels and Gaussian states

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 161-166).Discriminating between quantum states is an indispensable part of quantum information theory. This thesis investigates state discrimination of continuous quantum variables, focusing on bosonic communication channels and Gaussian states. The specific state discrimination problems studied are (a) quantum illumination and (b) optimal measurements for decoding bosonic channels. Quantum illumination is a technique for detection and imaging which uses entanglement between a probe and an ancilla to enhance sensitivity. I shall show how entanglement can help with the discrimination between two noisy and lossy bosonic channels, one in which a target reflects back a small part of the probe light, and the other in which all probe light is lost. This enhancement is obtained even though the channels are entanglement-breaking. The main result of this study is that, under optimum detection in the asymptotic limit of many detection trials, 6 dB of improvement in the error exponent can be achieved by using an entangled state as compared to a classical state. In the study of optimal measurements for decoding bosonic channels, I shall present an alternative measurement to the pretty-good measurement for attaining the classical capacity of the lossy bosonic channel given product coherent-state inputs. This new measurement has the feature that, at each step of the measurement, only projective measurements are needed. The measurement is a sequential one: the number of steps required is exponential in the code length, and the error rate of this measurement goes to zero in the limit of large code length. Although not physically practical in itself, this new measurement has a simple physical interpretation in terms of collective energy measurements, and may give rise to an implementation of an optimal measurement for lossy bosonic channels. The two problems studied in my thesis are examples of how state discrimination can be useful in solving problems by using quantum mechanical properties such as entanglement and entangling measurements.by Si Hui Tan.Ph.D

    Receiver design to harness quantum illumination advantage

    No full text
    corecore