5 research outputs found

    Receive Spatial Modulation for Massive MIMO Systems

    Get PDF
    In this paper, we consider the downlink of a massive multiple-input-multiple-output (MIMO) single user transmission system operating in the millimeter wave outdoor narrowband channel environment. We propose a novel receive spatial modulation architecture aimed to reduce the power consumption at the user terminal, while attaining a significant throughput. The energy consumption reduction is obtained through the use of analog devices (amplitude detector), which reduces the number of radio frequency chains and analog-to-digital-converters (ADCs). The base station transmits spatial and modulation symbols per channel use. We show that the optimal spatial symbol detector is a threshold detector that can be implemented by using one bit ADC. We derive closed form expressions for the detection threshold at different signal-to-noise-ratio (SNR) regions showing that a simple threshold can be obtained at high SNR and its performance approaches the exact threshold. We derive expressions for the average bit error probability in the presence and absence of the threshold estimation error showing that a small number of pilot symbols is needed. A performance comparison is done between the proposed system and fully digital MIMO showing that a suitable constellation selection can reduce the performance gap

    Receive spatial modulation for massive MIMO systems

    Get PDF
    ©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper, we consider the downlink of a massive multiple-input-multiple-output (MIMO) single user transmission system operating in the millimeter wave outdoor narrowband channel environment. We propose a novel receive spatial modulation architecture aimed to reduce the power consumption at the user terminal, while attaining a significant spectral efficiency and low bit error rate. The energy consumption reduction is obtained through the use of analog devices (amplitude detector), which reduces the number of radio frequency chains and analog to- digital-converters (ADCs). The base station transmits spatial and modulation symbols per channel use. We show that the optimal spatial symbol detector is a threshold detector that can be implemented by using one bit ADC. We derive closed form expressions for the detection threshold at different signal-to noise-ratio (SNR) regions. We derive expressions for the average bit error probability in the presence and absence of the threshold estimation error showing that a small number of pilot symbols is needed. A performance comparison is done between the proposed system and fully digital MIMO showing that a suitable constellation selection can reduce the performance gap.Peer ReviewedPostprint (author's final draft

    Autocorrelation function based mobile velocity estimation in correlated Rayleigh MIMO channels

    Get PDF
    In upcoming 4 th generation mobile systems using multiple antennas, knowledge of the speed of the mobile will help allocate adaptively scarce system resources to users. Due to insufficient scattering in the propagation environment or insufficient antenna spacing on either the transmitter or receiver, Multiple Input Multiple Output (MIMO) channels are often correlated. Velocity estimation in MIMO channels has not received much attention up to now. On the other hand, a large number of schemes have been developed for velocity estimation in Single Input Single Output (SISO) systems. Some of these schemes can be categorized as Autocorrelation Function (ACF) based schemes. These ACF based schemes are easy to implement and give accurate velocity estimates. In this thesis, we focus on extending this existing class of ACF based velocity estimation schemes to correlated MIMO channels. This way, the benefits of ACF based schemes can be derived in commonly occurring correlated MIMO channels. In the first part of the thesis, we first establish a performance reference by determining the performance of ACF based schemes in uncorrelated MIMO channels. Then we analyze the performance of ACF based schemes in correlated MIMO channel using the full antenna set. Some loss in the accuracy of velocity estimates is observed compared to the case of the uncorrelated MIMO channel. To recover this loss, we then present a channel decorrelation based recovery scheme. The second part of the thesis studies the extension of ACF based schemes to the case of correlated MIMO channels with antenna selection. The performance of the ACF based schemes in this case is analyzed. In this case, a degradation of performance larger than the case of the full antenna set is noticed. Thereafter a recovery scheme based on channel decorrelation is presented. This scheme partially recovers the degradation in accuracy of velocity estimates. Thus the work performed in this thesis enables us to obtain accurate estimates of velocity in correlated MIMO channel

    Spatial modulation schemes and modem architectures for millimeter wave radio systems

    Get PDF
    The rapid growth of wireless industry opens the door to several use cases such as internet of things and device-to-device communications, which require boosting the reliability and the spectral efficiency of the wireless access network, while reducing the energy consumption at the terminals. The vast spectrum available in millimeter-wave (mmWave) frequency band is one of the most promising candidates to achieve high-speed communications. However, the propagation of the radio signals at high carrier frequencies suffers from severe path-loss which reduces the coverage area. Fortunately, the small wavelengths of the mmWave signals allow packing a large number of antennas not only at the base station (BS) but also at the user terminal (UT). These massive antenna arrays can be exploited to attain high beamforming and combining gains and overcome the path-loss associated with the mmWave propagation. In conventional (fully digital) multiple-input-multiple-output (MIMO) transceivers, each antenna is connected to a specific radio-frequency (RF) chain and high resolution analog-to-digital-converter. Unfortunately, these devices are expensive and power hungry especially at mmWave frequency band and when operating in large bandwidths. Having this in mind, several MIMO transceiver architectures have been proposed with the purpose of reducing the hardware cost and the energy consumption. Fully connected hybrid analog and digital precoding schemes were proposed in with the aim of replacing some of the conventional RF chains by energy efficient analog devices. These fully connected mapping requires many analog devices that leads to non-negligible energy consumption. Partially connected hybrid architectures have been proposed to improve the energy efficiency of the fully connected transceivers by reducing the number of analog devices. Simplifying the transceiver’s architecture to reduce the power consumption results in a degradation of the attained spectral efficiency. In this PhD dissertation, we propose novel modulation schemes and massive MIMO transceiver design to combat the challenges at the mmWave cellular systems. The structure of the doctoral manuscript can be expressed as In Chapter 1, we introduce the transceiver design challenges at mmWave cellular communications. Then, we illustrate several state of the art architectures and highlight their limitations. After that, we propose scheme that attains high-energy efficiency and spectrum efficiency. In chapter 2, first, we mathematically describe the state of the art of the SM and highlight the main challenges with these schemes when applied at mmWave frequency band. In order to combat these challenges (for example, high cost and high power consumption), we propose novel SM schemes specifically designed for mmWave massive MIMO systems. After that, we explain how these schemes can be exploited in attaining energy efficient UT architecture. Finally, we present the channel model, systems assumptions and the transceiver devices power consumption models. In chapter 3, we consider single user SM system. First, we propose downlink (DL) receive SM (RSM) scheme where the UT can be implemented with single or multiple radio-frequency chains and the BS can be fully digital or hybrid architecture. Moreover, we consider different precoders at the BS and propose low complexity and efficient antenna selection schemes for narrowband and wideband transmissions. After that, we propose joint uplink-downlink SM scheme where we consider RSM in the DL and transmit SM (TSM) in the UL based on energy efficient hybrid UT architecture. In chapter 4, we extend the SM system to the multi-user case. Specifically, we develop joint multi-user power allocation, user selection and antenna selection algorithms for the broadcast and the multiple access channels. Chapter 5 is presented for concluding the thesis and proposing future research directions.Considerando los altos requerimientos de los servicios de nueva generación, las infraestructuras de red actual se han visto obligadas a evolucionar en la forma de manejar los diferentes recursos de red y computación. Con este fin, nuevas tecnologías han surgido para soportar las funcionalidades necesarias para esta evolución, significando también un gran cambio de paradigma en el diseño de arquitecturas para la futura implementación de redes.En este sentido, este documento de tesis doctoral presenta un análisis sobre estas tecnologías, enfocado en el caso de redes inter/intra Data Centre. Por consiguiente, la introducción de tecnologías basadas en redes ópticas ha sido estudiada, con el fin de identificar problemas actuales que puedan llegar a ser solucionados mediante el diseño y aplicación de nuevas técnicas, asimismo como a través del desarrollo o la extensión de los componentes de arquitectura de red.Con este propósito, se han definido una serie de propuestas relacionadas con aspectos cruciales, así como el control de dispositivos ópticos por SDN para habilitar el manejo de redes híbridas, la necesidad de definir un mecanismo de descubrimiento de topologías ópticas capaz de exponer información precisa, y el analizar las brechas existentes para la definición de una arquitectura común en fin de soportar las comunicaciones 5G.Para validar estas propuestas, se han presentado una serie de validaciones experimentales por medio de escenarios de prueba específicos, demostrando los avances en control, orquestación, virtualización y manejo de recursos con el fin de optimizar su utilización. Los resultados expuestos, además de corroborar la correcta operación de los métodos y componentes propuestos, abre el camino hacia nuevas formas de adaptar los actuales despliegues de red respecto a los desafíos definidos en el inicio de una nueva era de las telecomunicaciones.Postprint (published version

    Receive antenna selection for MIMO systems in correlated channels

    No full text
    Multiple-input multiple-output (MIMO) systems can provide great capacity improvement but suffer from multiple expensive RF chains. Antenna selection offers a good tradeoff between complexity and performance. This paper addresses the problem of optimal receive antenna selection in correlated channels. We consider the transmission of M independent signals to a base station with N correlated antennas and present two criteria for selecting the optimal L out of N receive antennas in terms of capacity maximization or BER minimization, assuming that only the long-term channel statistics, instead of the instantaneous channel state information, are known. Simulations will validate our theoretical analysis and demonstrate that within a rather wide angular spread range, the number of required RF chains can be significantly decreased using our proposed selection strategy while achieving very close performance to the instantaneous antenna selection system and the conventional MIMO system without antenna selection
    corecore