14 research outputs found

    Off-line vs. On-line Evaluation of Recommender Systems in Small E-commerce

    Full text link
    In this paper, we present our work towards comparing on-line and off-line evaluation metrics in the context of small e-commerce recommender systems. Recommending on small e-commerce enterprises is rather challenging due to the lower volume of interactions and low user loyalty, rarely extending beyond a single session. On the other hand, we usually have to deal with lower volumes of objects, which are easier to discover by users through various browsing/searching GUIs. The main goal of this paper is to determine applicability of off-line evaluation metrics in learning true usability of recommender systems (evaluated on-line in A/B testing). In total 800 variants of recommending algorithms were evaluated off-line w.r.t. 18 metrics covering rating-based, ranking-based, novelty and diversity evaluation. The off-line results were afterwards compared with on-line evaluation of 12 selected recommender variants and based on the results, we tried to learn and utilize an off-line to on-line results prediction model. Off-line results shown a great variance in performance w.r.t. different metrics with the Pareto front covering 68\% of the approaches. Furthermore, we observed that on-line results are considerably affected by the novelty of users. On-line metrics correlates positively with ranking-based metrics (AUC, MRR, nDCG) for novice users, while too high values of diversity and novelty had a negative impact on the on-line results for them. For users with more visited items, however, the diversity became more important, while ranking-based metrics relevance gradually decrease.Comment: Submitted to ACM Hypertext 2020 Conferenc

    Salience and Market-aware Skill Extraction for Job Targeting

    Full text link
    At LinkedIn, we want to create economic opportunity for everyone in the global workforce. To make this happen, LinkedIn offers a reactive Job Search system, and a proactive Jobs You May Be Interested In (JYMBII) system to match the best candidates with their dream jobs. One of the most challenging tasks for developing these systems is to properly extract important skill entities from job postings and then target members with matched attributes. In this work, we show that the commonly used text-based \emph{salience and market-agnostic} skill extraction approach is sub-optimal because it only considers skill mention and ignores the salient level of a skill and its market dynamics, i.e., the market supply and demand influence on the importance of skills. To address the above drawbacks, we present \model, our deployed \emph{salience and market-aware} skill extraction system. The proposed \model ~shows promising results in improving the online performance of job recommendation (JYMBII) (+1.92%+1.92\% job apply) and skill suggestions for job posters (−37%-37\% suggestion rejection rate). Lastly, we present case studies to show interesting insights that contrast traditional skill recognition method and the proposed \model~from occupation, industry, country, and individual skill levels. Based on the above promising results, we deployed the \model ~online to extract job targeting skills for all 2020M job postings served at LinkedIn.Comment: 9 pages, to appear in KDD202

    ContentWise Impressions: An Industrial Dataset with Impressions Included

    Full text link
    In this article, we introduce the ContentWise Impressions dataset, a collection of implicit interactions and impressions of movies and TV series from an Over-The-Top media service, which delivers its media contents over the Internet. The dataset is distinguished from other already available multimedia recommendation datasets by the availability of impressions, i.e., the recommendations shown to the user, its size, and by being open-source. We describe the data collection process, the preprocessing applied, its characteristics, and statistics when compared to other commonly used datasets. We also highlight several possible use cases and research questions that can benefit from the availability of user impressions in an open-source dataset. Furthermore, we release software tools to load and split the data, as well as examples of how to use both user interactions and impressions in several common recommendation algorithms.Comment: 8 pages, 2 figure

    Knowledge Discovery from CVs: A Topic Modeling Procedure

    Get PDF
    With a huge number of CVs available online, recruiting via the web has become an integral part of human resource management for companies. Automated text mining methods can be used to analyze large databases containing CVs. We present a topic modeling procedure consisting of five steps with the aim of identifying competences in CVs in an automated manner. Both the procedure and its exemplary application to CVs from IT experts are described in detail. The specific characteristics of CVs are considered in each step for optimal results. The exemplary application suggests that clearly interpretable topics describing fine-grained competences (e.g., Java programming, web design) can be discovered. This information can be used to rapidly assess the contents of a CV, categorize CVs and identify candidates for job offers. Furthermore, a topic-based search technique is evaluated to provide helpful decision support

    Recommender system in a non-stationary context: recommending job ads in pandemic times

    Get PDF
    International audienceThis paper focuses on the recommendation of job ads to job seekers, exploiting proprietary data from the French Public Employment Service (PES) and focusing more specifically on low or unskilled workers. Besides the usual challenges of data sparsity, the signal to noise ratio is high (few job seekers have diplomas), and scalability requirements are paramount.As a first contribution, a two-tiered approach is designed to handle these requirements; its empirical validation shows significant computational gains with no performance loss compared to boosted tree ensembles representative of the state of the art.A second contribution is a methodology aimed to assess the impact of the non-stationarity of the item and user distributions. Specifically, during the last three periods (before, during and after the Covid lock-downs), the numbers of job ads and job seekers dramatically vary in some industries. A normalized recall indicator is proposed to filter out the impact of variations of the number of job ads. This normalization suggests that the same score function adapts to the multi-faceted changes of the environment, resulting in different recommendations but with similar accuracy as before - at least for the job seekers finding a job

    Fairness of recommender systems in the recruitment domain: an analysis from technical and legal perspectives

    Get PDF
    Recommender systems (RSs) have become an integral part of the hiring process, be it via job advertisement ranking systems (job recommenders) for the potential employee or candidate ranking systems (candidate recommenders) for the employer. As seen in other domains, RSs are prone to harmful biases, unfair algorithmic behavior, and even discrimination in a legal sense. Some cases, such as salary equity in regards to gender (gender pay gap), stereotypical job perceptions along gendered lines, or biases toward other subgroups sharing specific characteristics in candidate recommenders, can have profound ethical and legal implications. In this survey, we discuss the current state of fairness research considering the fairness definitions (e.g., demographic parity and equal opportunity) used in recruitment-related RSs (RRSs). We investigate from a technical perspective the approaches to improve fairness, like synthetic data generation, adversarial training, protected subgroup distributional constraints, and post-hoc re-ranking. Thereafter, from a legal perspective, we contrast the fairness definitions and the effects of the aforementioned approaches with existing EU and US law requirements for employment and occupation, and second, we ascertain whether and to what extent EU and US law permits such approaches to improve fairness. We finally discuss the advances that RSs have made in terms of fairness in the recruitment domain, compare them with those made in other domains, and outline existing open challenges

    Improving accountability in recommender systems research through reproducibility

    Full text link
    Reproducibility is a key requirement for scientific progress. It allows the reproduction of the works of others, and, as a consequence, to fully trust the reported claims and results. In this work, we argue that, by facilitating reproducibility of recommender systems experimentation, we indirectly address the issues of accountability and transparency in recommender systems research from the perspectives of practitioners, designers, and engineers aiming to assess the capabilities of published research works. These issues have become increasingly prevalent in recent literature. Reasons for this include societal movements around intelligent systems and artificial intelligence striving toward fair and objective use of human behavioral data (as in Machine Learning, Information Retrieval, or Human–Computer Interaction). Society has grown to expect explanations and transparency standards regarding the underlying algorithms making automated decisions for and around us. This work surveys existing definitions of these concepts and proposes a coherent terminology for recommender systems research, with the goal to connect reproducibility to accountability. We achieve this by introducing several guidelines and steps that lead to reproducible and, hence, accountable experimental workflows and research. We additionally analyze several instantiations of recommender system implementations available in the literature and discuss the extent to which they fit in the introduced framework. With this work, we aim to shed light on this important problem and facilitate progress in the field by increasing the accountability of researchThis work has been funded by the Ministerio de Ciencia, Innovación y Universidades (reference: PID2019-108965GB-I00
    corecore