5 research outputs found

    Learning FCM with Simulated Annealing

    Get PDF

    Big data-driven fuzzy cognitive map for prioritising IT service procurement in the public sector

    Get PDF
    YesThe prevalence of big data is starting to spread across the public and private sectors however, an impediment to its widespread adoption orientates around a lack of appropriate big data analytics (BDA) and resulting skills to exploit the full potential of big data availability. In this paper, we propose a novel BDA to contribute towards this void, using a fuzzy cognitive map (FCM) approach that will enhance decision-making thus prioritising IT service procurement in the public sector. This is achieved through the development of decision models that capture the strengths of both data analytics and the established intuitive qualitative approach. By taking advantages of both data analytics and FCM, the proposed approach captures the strength of data-driven decision-making and intuitive model-driven decision modelling. This approach is then validated through a decision-making case regarding IT service procurement in public sector, which is the fundamental step of IT infrastructure supply for publics in a regional government in the Russia federation. The analysis result for the given decision-making problem is then evaluated by decision makers and e-government expertise to confirm the applicability of the proposed BDA. In doing so, demonstrating the value of this approach in contributing towards robust public decision-making regarding IT service procurement.EU FP7 project Policy Compass (Project No. 612133

    FACETS: A cognitive business intelligence system

    Full text link
    A cognitive decision support system called FACETS was developed and evaluated based on the situation retrieval (SR) model. The aim of FACETS is to provide decision makers cognitive decision support in ill-structured decision situations. The design and development of FACETS includes novel concepts, models, algorithms and system architecture, such as ontology and experience representation, situation awareness parsing, data warehouse query construction and guided situation presentation. The experiments showed that FACETS is able to play a significant role in supporting ill-structured decision making through developing and enriching situation awareness. © 2013 Elsevier Ltd

    Modelling multicriteria value interactions with Reasoning Maps

    Get PDF
    Idiographic causal maps are extensively employed in Operational Research to support problem structuring and complex decision making processes. They model means-end or causal discourses as a network of concepts connected by links denoting influence, thus enabling the representation of chains of arguments made by decision-makers. There have been proposals to employ such structures to support the structuring of multicriteria evaluation models, within an additive value measurement framework. However, a drawback of this multi-methodological modelling is the loss of richness of interactions along the means-end chains when evaluating options. This has led to the development of methods that make use of the structure of the map itself to evaluate options, such as the Reasoning Maps method, which employs ordinal scales and ordinal operators for such evaluation. However, despite their potential, Reasoning Maps cannot model explicitly value interactions nor perform a quantitative ranking of options, limiting their applicability and usefulness. In this article we propose extending the Reasoning Maps approach through a multilinear evaluation model structure, built with the MACBETH multicriteria method. The model explicitly captures the value interactions between concepts along the map and employs the MACBETH protocol of questioning to assess the strength of influence for each means-end link. The feasibility of the proposed approach to evaluate options and to deal with multicriteria interactions is tested in a real-world application to support the construction of a population health index

    Fuzzy Cognitive Map-Based Modeling of Social Acceptance to Overcome Uncertainties in Establishing Waste Biorefinery Facilities

    Get PDF
    Sustainable Waste Biorefinery Facilities (WBFs) represent multifactorial systems that necessitate the organization, cooperation and the acceptance of different social stakeholders. However, these attempts have become targets of environmental, social and legal oppositions despite their obvious economic benefits. The variety of ambivalent and heterogeneous external effects of such projects result in either local support or opposition to the facility, which in turn becomes a critical factor affecting facility location decisions, and subsequent success of a WBF. Research has shown that simple surveys do not sufficiently measure social acceptance of such endeavors, and in most cases, local community factors dominate other external valuable impacts. In the current study, a novel Fuzzy Cognitive Map (FCM) modeling approach is proposed in order to analyze the socio-economic implications and to overcome multiple uncertainties occurring in sustainable WBF development and implementation. The primary investigation relates to the factors that influence the development of organic or chemical treatment of waste by the local communities and the competent authorities. The determination of concepts involved in the FCM modeling depends on a hybrid approach where both experts' opinion and statistical results from questionnaires distributed to stakeholders participate in the concept circumscription, thus identifying the centrality of each node in the model. Several steady state and dynamic analysis scenarios show the influence of driver concepts to receiver concepts on the social aspect FCM constructed
    corecore