16,285 research outputs found

    Extending the Calculus of Constructions with Tarski's fix-point theorem

    Get PDF
    We propose to use Tarski's least fixpoint theorem as a basis to define recursive functions in the calculus of inductive constructions. This widens the class of functions that can be modeled in type-theory based theorem proving tool to potentially non-terminating functions. This is only possible if we extend the logical framework by adding the axioms that correspond to classical logic. We claim that the extended framework makes it possible to reason about terminating and non-terminating computations and we show that common facilities of the calculus of inductive construction, like program extraction can be extended to also handle the new functions

    Functional Big-step Semantics

    Get PDF
    When doing an interactive proof about a piece of software, it is important that the underlying programming language’s semantics does not make the proof unnecessarily difficult or unwieldy. Both smallstep and big-step semantics are commonly used, and the latter is typically given by an inductively defined relation. In this paper, we consider an alternative: using a recursive function akin to an interpreter for the language. The advantages include a better induction theorem, less duplication, accessibility to ordinary functional programmers, and the ease of doing symbolic simulation in proofs via rewriting. We believe that this style of semantics is well suited for compiler verification, including proofs of divergence preservation. We do not claim the invention of this style of semantics: our contribution here is to clarify its value, and to explain how it supports several language features that might appear to require a relational or small-step approach. We illustrate the technique on a simple imperative language with C-like for-loops and a break statement, and compare it to a variety of other approaches. We also provide ML and lambda-calculus based examples to illustrate its generality

    Recursive Definitions of Monadic Functions

    Full text link
    Using standard domain-theoretic fixed-points, we present an approach for defining recursive functions that are formulated in monadic style. The method works both in the simple option monad and the state-exception monad of Isabelle/HOL's imperative programming extension, which results in a convenient definition principle for imperative programs, which were previously hard to define. For such monadic functions, the recursion equation can always be derived without preconditions, even if the function is partial. The construction is easy to automate, and convenient induction principles can be derived automatically.Comment: In Proceedings PAR 2010, arXiv:1012.455

    Size-Change Termination as a Contract

    Full text link
    Termination is an important but undecidable program property, which has led to a large body of work on static methods for conservatively predicting or enforcing termination. One such method is the size-change termination approach of Lee, Jones, and Ben-Amram, which operates in two phases: (1) abstract programs into "size-change graphs," and (2) check these graphs for the size-change property: the existence of paths that lead to infinite decreasing sequences. We transpose these two phases with an operational semantics that accounts for the run-time enforcement of the size-change property, postponing (or entirely avoiding) program abstraction. This choice has two key consequences: (1) size-change termination can be checked at run-time and (2) termination can be rephrased as a safety property analyzed using existing methods for systematic abstraction. We formulate run-time size-change checks as contracts in the style of Findler and Felleisen. The result compliments existing contracts that enforce partial correctness specifications to obtain contracts for total correctness. Our approach combines the robustness of the size-change principle for termination with the precise information available at run-time. It has tunable overhead and can check for nontermination without the conservativeness necessary in static checking. To obtain a sound and computable termination analysis, we apply existing abstract interpretation techniques directly to the operational semantics, avoiding the need for custom abstractions for termination. The resulting analyzer is competitive with with existing, purpose-built analyzers

    Termination Casts: A Flexible Approach to Termination with General Recursion

    Full text link
    This paper proposes a type-and-effect system called Teqt, which distinguishes terminating terms and total functions from possibly diverging terms and partial functions, for a lambda calculus with general recursion and equality types. The central idea is to include a primitive type-form "Terminates t", expressing that term t is terminating; and then allow terms t to be coerced from possibly diverging to total, using a proof of Terminates t. We call such coercions termination casts, and show how to implement terminating recursion using them. For the meta-theory of the system, we describe a translation from Teqt to a logical theory of termination for general recursive, simply typed functions. Every typing judgment of Teqt is translated to a theorem expressing the appropriate termination property of the computational part of the Teqt term.Comment: In Proceedings PAR 2010, arXiv:1012.455
    • …
    corecore