122,097 research outputs found

    Reasoning about Actions with Temporal Answer Sets

    Full text link
    In this paper we combine Answer Set Programming (ASP) with Dynamic Linear Time Temporal Logic (DLTL) to define a temporal logic programming language for reasoning about complex actions and infinite computations. DLTL extends propositional temporal logic of linear time with regular programs of propositional dynamic logic, which are used for indexing temporal modalities. The action language allows general DLTL formulas to be included in domain descriptions to constrain the space of possible extensions. We introduce a notion of Temporal Answer Set for domain descriptions, based on the usual notion of Answer Set. Also, we provide a translation of domain descriptions into standard ASP and we use Bounded Model Checking techniques for the verification of DLTL constraints.Comment: To appear in Theory and Practice of Logic Programmin

    Handling Defeasibilities in Action Domains

    Full text link
    Representing defeasibility is an important issue in common sense reasoning. In reasoning about action and change, this issue becomes more difficult because domain and action related defeasible information may conflict with general inertia rules. Furthermore, different types of defeasible information may also interfere with each other during the reasoning. In this paper, we develop a prioritized logic programming approach to handle defeasibilities in reasoning about action. In particular, we propose three action languages {\cal AT}^{0}, {\cal AT}^{1} and {\cal AT}^{2} which handle three types of defeasibilities in action domains named defeasible constraints, defeasible observations and actions with defeasible and abnormal effects respectively. Each language with a higher superscript can be viewed as an extension of the language with a lower superscript. These action languages inherit the simple syntax of {\cal A} language but their semantics is developed in terms of transition systems where transition functions are defined based on prioritized logic programs. By illustrating various examples, we show that our approach eventually provides a powerful mechanism to handle various defeasibilities in temporal prediction and postdiction. We also investigate semantic properties of these three action languages and characterize classes of action domains that present more desirable solutions in reasoning about action within the underlying action languages.Comment: 49 pages, 1 figure, to be appeared in journal Theory and Practice Logic Programmin
    • …
    corecore