98 research outputs found

    CPS Transformation of Beta-Redexes

    Get PDF
    The extra compaction of Sabry and Felleisen's transformation is due to making continuations occur first in CPS terms and classifying more redexes as administrative. We show that the extra compaction is actually independent of the relative positions of values and continuations and furthermore that it is solely due to a context-sensitive transformation of beta-redexes. We stage the more compact CPS transformation into a first-order uncurrying phase and a context-insensitive CPS transformation. We also dene a context-insensitive CPS transformation that is just as compact. This CPS transformation operates in one pass and is dependently typed.Keywords: Continuation-passing style (CPS), Plotkin, Fischer, one-pass CPStransformation, two-level lambda-calculus, generalized reduction

    On One-Pass CPS Transformations

    Get PDF
    We bridge two distinct approaches to one-pass CPS transformations, i.e., CPS transformations that reduce administrative redexes at transformation time instead of in a post-processing phase. One approach is compositional and higher-order, and is independently due to Appel, Danvy and Filinski, and Wand, building on Plotkin's seminal work. The other is non-compositional and based on a reduction semantics for the lambda-calculus, and is due to Sabry and Felleisen. To relate the two approaches, we use three tools: Reynolds's defunctionalization and its left inverse, refunctionalization; a special case of fold-unfold fusion due to Ohori and Sasano, fixed-point promotion; and an implementation technique for reduction semantics due to Danvy and Nielsen, refocusing. This work is directly applicable to transforming programs into monadic normal form

    A Linear First-Order Functional Intermediate Language for Verified Compilers

    Full text link
    We present the linear first-order intermediate language IL for verified compilers. IL is a functional language with calls to a nondeterministic environment. We give IL terms a second, imperative semantic interpretation and obtain a register transfer language. For the imperative interpretation we establish a notion of live variables. Based on live variables, we formulate a decidable property called coherence ensuring that the functional and the imperative interpretation of a term coincide. We formulate a register assignment algorithm for IL and prove its correctness. The algorithm translates a functional IL program into an equivalent imperative IL program. Correctness follows from the fact that the algorithm reaches a coherent program after consistently renaming local variables. We prove that the maximal number of live variables in the initial program bounds the number of different variables in the final coherent program. The entire development is formalized in Coq.Comment: Addressed comments from reviewers (ITP 2015): (1) Added discussion of a paper in related work (2) Added definition of renamed-apart in appendix (3) Formulation changes in a coupe of place

    A Simple Correctness Proof of the Direct-Style Transformation

    Get PDF
    We build on Danvy and Nielsen's first-order program transformation into continuation-passing style (CPS) to present a new correctness proof of the converse transformation, i.e., a one-pass transformation from CPS back to direct style. Previously published proofs were based on, e.g., a one-pass higher-order CPS transformation, and were complicated by having to reason about higher-order functions. In contrast, this work is based on a one-pass CPS transformation that is both compositional and first-order, and therefore the proof simply proceeds by structural induction on syntax

    CPS Transformation of Beta-Redexes

    Get PDF
    The extra compaction of the most compacting CPS transformation in existence, which is due to Sabry and Felleisen, is generally attributed to (1) making continuations occur first in CPS terms and (2) classifying more redexes as administrative. We show that this extra compaction is actually independent of the relative positions of values and continuations and furthermore that it is solely due to a context-sensitive transformation of beta-redexes. We stage the more compact CPS transformation into a first-order uncurrying phase and a context-insensitive CPS transformation. We also define a context-insensitive CPS transformation that provides the extra compaction. This CPS transformation operates in one pass and is dependently typed

    Reasoning about Programs With Effects

    Get PDF
    AbstractThis note presents a summary of my research on reasoning about programs with effects. This work has been carried out in collaboration with several colleagues over roughly the past ten years. The work has had two major sub-themes: reasoning about functional programs extended with imperative features; and reasoning about components of open distributed systems. Functional programming languages extended with imperative features include languages like Scheme and ML as well as object-based languages such as Java. This work has focused on operationally based semantics and formalisms for specifying and reasoning about such programs. The work on components of open distributed systems has been based on the actor model of computation and has focused on developing semantic models for modular specification and composition of actor systems
    • …
    corecore